Musielak–Orlicz–Lorentz Hardy Spaces: Maximal Function, Finite Atomic, and Littlewood–Paley Characterizations with Applications to Dual Spaces and Summability of Fourier Transforms

IF 0.8 3区 数学 Q2 MATHEMATICS
Hongchao Jia, Der-Chen Chang, Ferenc Weisz, Dachun Yang, Wen Yuan
{"title":"Musielak–Orlicz–Lorentz Hardy Spaces: Maximal Function, Finite Atomic, and Littlewood–Paley Characterizations with Applications to Dual Spaces and Summability of Fourier Transforms","authors":"Hongchao Jia,&nbsp;Der-Chen Chang,&nbsp;Ferenc Weisz,&nbsp;Dachun Yang,&nbsp;Wen Yuan","doi":"10.1007/s10114-025-3153-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>q</i> ∈ (0, ∞] and <i>φ</i> be a Musielak–Orlicz function with uniformly lower type <i>p</i><span>\n <sup>−</sup><sub><i>φ</i></sub>\n \n </span> ∈ (0, ∞) and uniformly upper type <i>p</i><span>\n <sup>+</sup><sub><i>φ</i></sub>\n \n </span> ∈ (0, ∞). In this article, the authors establish various real-variable characterizations of the Musielak–Orlicz–Lorentz Hardy space <i>H</i><sup><i>φ,q</i></sup>(ℝ<sup><i>n</i></sup>), respectively, in terms of various maximal functions, finite atoms, and various Littlewood–Paley functions. As applications, the authors obtain the dual space of <i>H</i><sup><i>φ,q</i></sup>(ℝ<sup><i>n</i></sup>) and the summability of Fourier transforms from <i>H</i><sup><i>φ,q</i></sup>(ℝ<sup><i>n</i></sup>) to the Musielak–Orlicz–Lorentz space <i>L</i><sup><i>φ,q</i></sup>(ℝ<sup><i>n</i></sup>) when <i>q</i> ∈ (0, ∞) or from the Musielak–Orlicz Hardy space <i>H</i><sup><i>φ</i></sup>(ℝ<sup><i>n</i></sup>) to <i>L</i><sup><i>φ,q</i></sup>(ℝ<sup><i>n</i></sup>) in the critical case. These results are new when <i>q</i> ∈ (0, ∞) and also essentially improve the existing corresponding results (if any) in the case <i>q</i> = ∞ via removing the original assumption that <i>φ</i> is concave. To overcome the essential obstacles caused by both that <i>φ</i> may not be concave and that the boundedness of the powered Hardy–Littlewood maximal operator on associated spaces of Musielak–Orlicz spaces is still unknown, the authors make full use of the obtained atomic characterization of <i>H</i><sup><i>φ,q</i></sup>(ℝ<sup><i>n</i></sup>), the corresponding results related to weighted Lebesgue spaces, and the subtle relation between Musielak–Orlicz spaces and weighted Lebesgue spaces.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 1","pages":"1 - 77"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3153-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let q ∈ (0, ∞] and φ be a Musielak–Orlicz function with uniformly lower type p φ ∈ (0, ∞) and uniformly upper type p +φ ∈ (0, ∞). In this article, the authors establish various real-variable characterizations of the Musielak–Orlicz–Lorentz Hardy space Hφ,q(ℝn), respectively, in terms of various maximal functions, finite atoms, and various Littlewood–Paley functions. As applications, the authors obtain the dual space of Hφ,q(ℝn) and the summability of Fourier transforms from Hφ,q(ℝn) to the Musielak–Orlicz–Lorentz space Lφ,q(ℝn) when q ∈ (0, ∞) or from the Musielak–Orlicz Hardy space Hφ(ℝn) to Lφ,q(ℝn) in the critical case. These results are new when q ∈ (0, ∞) and also essentially improve the existing corresponding results (if any) in the case q = ∞ via removing the original assumption that φ is concave. To overcome the essential obstacles caused by both that φ may not be concave and that the boundedness of the powered Hardy–Littlewood maximal operator on associated spaces of Musielak–Orlicz spaces is still unknown, the authors make full use of the obtained atomic characterization of Hφ,q(ℝn), the corresponding results related to weighted Lebesgue spaces, and the subtle relation between Musielak–Orlicz spaces and weighted Lebesgue spaces.

Musielak-Orlicz-Lorentz Hardy空间:极大函数、有限原子和Littlewood-Paley刻画及其在对偶空间和傅里叶变换可和性上的应用
设q∈(0,∞),φ为一致下型p−φ∈(0,∞),一致上型p +φ∈(0,∞)的Musielak-Orlicz函数。在本文中,作者分别用各种极大函数、有限原子和各种Littlewood-Paley函数建立了Musielak-Orlicz-Lorentz Hardy空间Hφ,q(∈n)的各种实变量表征。作为应用,得到了Hφ,q(∈)的对偶空间,以及当q∈(0,∞)时从Hφ,q(∈)到Musielak-Orlicz - lorentz空间Lφ,q(∈)的傅里叶变换的可和性,临界情况下从Musielak-Orlicz Hardy空间Hφ(∈)到Lφ,q(∈)的可和性。这些结果在q∈(0,∞)时是新的,并且通过去掉原来φ为凹的假设,从本质上改进了q =∞时已有的相应结果(如果有的话)。为了克服由于φ不凹和幂Hardy-Littlewood极大算子在Musielak-Orlicz空间的关联空间上的有界性未知所造成的本质障碍,作者充分利用了已经得到的Hφ,q(∈n)的原子刻划、与加权Lebesgue空间相关的相应结果以及Musielak-Orlicz空间与加权Lebesgue空间之间的微妙关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信