Sea-SHINE: Semantic-Aware 3D Neural Mapping Using Implicit Representations

IF 1 Q4 OPTICS
V. Bezuglyj, D. A. Yudin
{"title":"Sea-SHINE: Semantic-Aware 3D Neural Mapping Using Implicit Representations","authors":"V. Bezuglyj,&nbsp;D. A. Yudin","doi":"10.3103/S1060992X24700711","DOIUrl":null,"url":null,"abstract":"<p>Semantic-aware mapping is crucial for advancing robotic navigation and interaction within complex environments. Traditional 3D mapping techniques primarily capture geometric details, missing the semantic richness necessary for autonomous systems to understand their surroundings comprehensively. This paper presents Sea-SHINE, a novel approach that integrates semantic information within a neural implicit mapping framework for large-scale environments. Our method enhances the utility and navigational relevance of 3D maps by embedding semantic awareness into the mapping process, allowing robots to recognize, understand, and reconstruct environments effectively. The proposed system leverages dual decoders and a semantic awareness module, which utilizes Feature-wise Linear Modulation (FiLM) to condition mapping on semantic labels. Extensive experiments on datasets such as SemanticKITTI, KITTI-360, and ITLP-Campus demonstrate significant improvements in map precision and recall, particularly in recognizing crucial objects like road signs. Our implementation bridges the gap between geometric accuracy and semantic understanding, fostering a deeper interaction between robots and their operational environments. The code is publicly available at https://github.com/VitalyyBezuglyj/Sea-SHINE.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 3 supplement","pages":"S445 - S456"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic-aware mapping is crucial for advancing robotic navigation and interaction within complex environments. Traditional 3D mapping techniques primarily capture geometric details, missing the semantic richness necessary for autonomous systems to understand their surroundings comprehensively. This paper presents Sea-SHINE, a novel approach that integrates semantic information within a neural implicit mapping framework for large-scale environments. Our method enhances the utility and navigational relevance of 3D maps by embedding semantic awareness into the mapping process, allowing robots to recognize, understand, and reconstruct environments effectively. The proposed system leverages dual decoders and a semantic awareness module, which utilizes Feature-wise Linear Modulation (FiLM) to condition mapping on semantic labels. Extensive experiments on datasets such as SemanticKITTI, KITTI-360, and ITLP-Campus demonstrate significant improvements in map precision and recall, particularly in recognizing crucial objects like road signs. Our implementation bridges the gap between geometric accuracy and semantic understanding, fostering a deeper interaction between robots and their operational environments. The code is publicly available at https://github.com/VitalyyBezuglyj/Sea-SHINE.

Abstract Image

Sea-SHINE:使用隐式表示的语义感知三维神经映射
语义感知映射对于在复杂环境中推进机器人导航和交互至关重要。传统的3D映射技术主要捕获几何细节,缺少自主系统全面了解周围环境所需的语义丰富性。本文介绍了Sea-SHINE,一种将语义信息集成到大规模环境的神经隐式映射框架中的新方法。我们的方法通过将语义感知嵌入到绘图过程中,增强了3D地图的实用性和导航相关性,使机器人能够有效地识别、理解和重建环境。提出的系统利用双解码器和语义感知模块,该模块利用特征线性调制(FiLM)来条件映射语义标签。在SemanticKITTI、KITTI-360和ITLP-Campus等数据集上进行的大量实验表明,地图精度和召回率有了显著提高,特别是在识别道路标志等关键物体方面。我们的实现弥合了几何精度和语义理解之间的差距,促进了机器人与其操作环境之间更深层次的交互。该代码可在https://github.com/VitalyyBezuglyj/Sea-SHINE上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信