{"title":"Estimation of the Maximum Migration Distance of a Finite Volume of Light Fluid in a Saturated Porous Medium","authors":"A. A. Afanasyev, E. A. Vedeneeva, I. E. Mikheev","doi":"10.1134/S0015462824602493","DOIUrl":null,"url":null,"abstract":"<p>Flow of a light fluid through a porous medium saturated with another (heavy) fluid is studied. The one-dimensional formulation of the problem describing two-phase flow in a vertical isolated porous column is considered. Assuming that the volume of light liquid is finite, its maximum upward motion under the action of the buoyancy force is estimated. A simple method for approximate estimate of this migration distance is proposed. It is shown that it is determined by only a single dimensionless number (similarity criterion) over a wide range of fluid and porous medium parameters, and the effect of other parameters is small. The dependence of the maximum migration distance on the distingushed similarity criterion is calculated. The results of study can be useful in estimating the maximum distance over which the injected gas propagates from the well through a water-saturated formation.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 5","pages":"1056 - 1065"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824602493","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Flow of a light fluid through a porous medium saturated with another (heavy) fluid is studied. The one-dimensional formulation of the problem describing two-phase flow in a vertical isolated porous column is considered. Assuming that the volume of light liquid is finite, its maximum upward motion under the action of the buoyancy force is estimated. A simple method for approximate estimate of this migration distance is proposed. It is shown that it is determined by only a single dimensionless number (similarity criterion) over a wide range of fluid and porous medium parameters, and the effect of other parameters is small. The dependence of the maximum migration distance on the distingushed similarity criterion is calculated. The results of study can be useful in estimating the maximum distance over which the injected gas propagates from the well through a water-saturated formation.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.