{"title":"Specific Features of Modeling Nanofluid Flows (a Review)","authors":"V. Ya. Rudyak","doi":"10.1134/S0015462824602882","DOIUrl":null,"url":null,"abstract":"<p>Problems arising when modeling nanofluids are discussed. The possibility of using two- and one-fluid descriptions is analyzed. The thermophysical properties of nanofluids are reviewed and it is shown that their viscosity and thermal conductivity depend not only on the concentration of nanoparticles, but also on their size and material. The behavior of similarity parameters and their dependence on the concentration, size and material of nanoparticles are studied in detail. It is shown that in the general case it is impossible to solve the problem simply by varying the similarity parameters. Two examples of solving the problem of heat transfer of two different nanofluids, with conventional spherical nanoparticles and with carbon nanotubes, are given. In the latter case, the nanofluid is non-Newtonian. It has been shown that nanofluids make it possible to obtain very high values of excess of the heat transfer coefficient.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 5","pages":"1072 - 1087"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0015462824602882.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824602882","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Problems arising when modeling nanofluids are discussed. The possibility of using two- and one-fluid descriptions is analyzed. The thermophysical properties of nanofluids are reviewed and it is shown that their viscosity and thermal conductivity depend not only on the concentration of nanoparticles, but also on their size and material. The behavior of similarity parameters and their dependence on the concentration, size and material of nanoparticles are studied in detail. It is shown that in the general case it is impossible to solve the problem simply by varying the similarity parameters. Two examples of solving the problem of heat transfer of two different nanofluids, with conventional spherical nanoparticles and with carbon nanotubes, are given. In the latter case, the nanofluid is non-Newtonian. It has been shown that nanofluids make it possible to obtain very high values of excess of the heat transfer coefficient.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.