Supersonic Gas Flow in a Plane Channel with a Normal Glow Discharge in the Magnetic Field

IF 1 4区 工程技术 Q4 MECHANICS
S. T. Surzhikov
{"title":"Supersonic Gas Flow in a Plane Channel with a Normal Glow Discharge in the Magnetic Field","authors":"S. T. Surzhikov","doi":"10.1134/S0015462824603991","DOIUrl":null,"url":null,"abstract":"<p>The results of numerical study of the interaction of supersonic molecular nitrogen flow with a normal glow discharge in a magnetic field at velocities M = 2 and 5 and a pressure of 0.6 Torr are given. It is shown that, depending on the polarization of the magnetic field induction vector, the magnetic field can both accelerate and slow down the motion of the discharge current column in gas flow. When there is no magnetic field, the normal glow discharge is not carried away by the flow, but moves at a noticeably lower velocity. This is a consequence of the influence of the gas boundary layers near the surfaces and a delay in the rate of ionization processes in the electric current column of gas-discharge plasma relative to the velocity of motion of the neutral gas that penetrates the discharge.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 5","pages":"1137 - 1153"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824603991","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The results of numerical study of the interaction of supersonic molecular nitrogen flow with a normal glow discharge in a magnetic field at velocities M = 2 and 5 and a pressure of 0.6 Torr are given. It is shown that, depending on the polarization of the magnetic field induction vector, the magnetic field can both accelerate and slow down the motion of the discharge current column in gas flow. When there is no magnetic field, the normal glow discharge is not carried away by the flow, but moves at a noticeably lower velocity. This is a consequence of the influence of the gas boundary layers near the surfaces and a delay in the rate of ionization processes in the electric current column of gas-discharge plasma relative to the velocity of motion of the neutral gas that penetrates the discharge.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信