Thermal Processes in the Heating of Powder Compacts of Metals and Their Compositions III. Thermokinetics of Recrystallization Processes in the Heating of Compacts Produced from a Mixture of Aluminum and Iron

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS
V. P. Solntsev, G. A. Bagliuk, T. O. Solntseva, K. M. Petrash
{"title":"Thermal Processes in the Heating of Powder Compacts of Metals and Their Compositions III. Thermokinetics of Recrystallization Processes in the Heating of Compacts Produced from a Mixture of Aluminum and Iron","authors":"V. P. Solntsev,&nbsp;G. A. Bagliuk,&nbsp;T. O. Solntseva,&nbsp;K. M. Petrash","doi":"10.1007/s11106-025-00446-8","DOIUrl":null,"url":null,"abstract":"<p>The thermokinetics of recrystallization processes that occur during the heating of porous compacts, produced by cold pressing a mixture of ultrapure aluminum and iron powders in a 50: 50 ratio in a steel die, was experimentally studied. Over the 130–190°C temperature range, the aluminum component of the mixture undergoes relaxation, exhibiting wave-like behavior with a period of 0.2– 0.3 sec. Complete recrystallization occurs within the 165–235°C range. Subsequently, the relaxation process begins in the iron component of the mixture, with the initial stage characterized by nonlinear oscillations, transitioning to the next stage involving wave propagation of thermal energy. There are several periods of changes in wave propagation. The nonlinear wave-like rise in temperature during relaxation typically ends with another surge of energy release when the temperature rise period shortens, indicating more intense heat release. At its initial stage, the recrystallization process shows stationary linear behavior, which later transitions to the emergence of nonlinear waves. Changes in wave frequency are observed, along with intermittent wave behavior, suggesting the turbulence of thermal flows. Following this regime, the temperature increases up to the melting point of aluminum. However, complete melting does not occur because of crystallization within lower-temperature regions. All transitions marked by changes in thermokinetic paths at both relaxation and recrystallization stages are accompanied by bifurcation changes in the amplitude of the thermal waves.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"63 3-4","pages":"144 - 149"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-025-00446-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The thermokinetics of recrystallization processes that occur during the heating of porous compacts, produced by cold pressing a mixture of ultrapure aluminum and iron powders in a 50: 50 ratio in a steel die, was experimentally studied. Over the 130–190°C temperature range, the aluminum component of the mixture undergoes relaxation, exhibiting wave-like behavior with a period of 0.2– 0.3 sec. Complete recrystallization occurs within the 165–235°C range. Subsequently, the relaxation process begins in the iron component of the mixture, with the initial stage characterized by nonlinear oscillations, transitioning to the next stage involving wave propagation of thermal energy. There are several periods of changes in wave propagation. The nonlinear wave-like rise in temperature during relaxation typically ends with another surge of energy release when the temperature rise period shortens, indicating more intense heat release. At its initial stage, the recrystallization process shows stationary linear behavior, which later transitions to the emergence of nonlinear waves. Changes in wave frequency are observed, along with intermittent wave behavior, suggesting the turbulence of thermal flows. Following this regime, the temperature increases up to the melting point of aluminum. However, complete melting does not occur because of crystallization within lower-temperature regions. All transitions marked by changes in thermokinetic paths at both relaxation and recrystallization stages are accompanied by bifurcation changes in the amplitude of the thermal waves.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信