Tarek Zaatar, Ali Cheaitou, Olivier Faury, Patrick Rigot-Muller
{"title":"Arctic sea ice thickness prediction using machine learning: a long short-term memory model","authors":"Tarek Zaatar, Ali Cheaitou, Olivier Faury, Patrick Rigot-Muller","doi":"10.1007/s10479-024-06457-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces and details the development of a Long Short-Term Memory (LSTM) model designed to predict Arctic ice thickness, serving as a decision-making tool for maritime navigation. By forecasting ice conditions accurately, the model aims to support safer and more efficient shipping through Arctic waters. The primary objective is to equip shipping companies and decision-makers with a reliable method for estimating ice thickness in the Arctic. This will enable them to assess the level of risk due to ice and make informed decisions regarding vessel navigation, icebreaker assistance, and optimal sailing speeds. We utilized historical ice thickness data from the Copernicus database, covering the period from 1991 to 2019. This dataset was collected and preprocessed to train and validate the LSTM predictive model for accurate ice thickness forecasting. The developed LSTM model demonstrated a high level of accuracy in predicting future ice thickness. Experiments indicated that using daily datasets, the model could forecast daily ice thickness up to 30 days ahead. With monthly datasets, it successfully predicted ice thickness up to six months in advance, with the monthly data generally yielding better performance. In practical terms, this predictive model offers a valuable tool for shipping companies exploring Arctic routes, which can reduce the distance between Asia and Europe by 40%. By providing accurate ice thickness forecasts, the model assists in compliance with the International Maritime Organization’s Polar Code and the Polar Operational Limit Assessment Risk Indexing System. This enhances navigation safety and efficiency in Arctic waters, allowing ships to determine the necessity of icebreaker assistance and optimal speeds, ultimately leading to significant cost savings and risk mitigation in the shipping industry.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"345 1","pages":"533 - 568"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06457-9","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces and details the development of a Long Short-Term Memory (LSTM) model designed to predict Arctic ice thickness, serving as a decision-making tool for maritime navigation. By forecasting ice conditions accurately, the model aims to support safer and more efficient shipping through Arctic waters. The primary objective is to equip shipping companies and decision-makers with a reliable method for estimating ice thickness in the Arctic. This will enable them to assess the level of risk due to ice and make informed decisions regarding vessel navigation, icebreaker assistance, and optimal sailing speeds. We utilized historical ice thickness data from the Copernicus database, covering the period from 1991 to 2019. This dataset was collected and preprocessed to train and validate the LSTM predictive model for accurate ice thickness forecasting. The developed LSTM model demonstrated a high level of accuracy in predicting future ice thickness. Experiments indicated that using daily datasets, the model could forecast daily ice thickness up to 30 days ahead. With monthly datasets, it successfully predicted ice thickness up to six months in advance, with the monthly data generally yielding better performance. In practical terms, this predictive model offers a valuable tool for shipping companies exploring Arctic routes, which can reduce the distance between Asia and Europe by 40%. By providing accurate ice thickness forecasts, the model assists in compliance with the International Maritime Organization’s Polar Code and the Polar Operational Limit Assessment Risk Indexing System. This enhances navigation safety and efficiency in Arctic waters, allowing ships to determine the necessity of icebreaker assistance and optimal speeds, ultimately leading to significant cost savings and risk mitigation in the shipping industry.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.