{"title":"Solving arbitrary one-loop reduction via generating function","authors":"Tingfei Li, Yuekai Song, Liang Zhang","doi":"10.1140/epjc/s10052-025-13848-0","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the concept of generating function has been employed in one-loop reduction. For one-loop integrals encompassing arbitrary tensor ranks and higher-pole contributions, the generating function can be decomposed into a tensor part and a higher-pole part. While the tensor component has been thoroughly addressed in recent studies, there remains a lack of satisfactory investigations regarding the higher-pole part. In this work, we completely solve the problem. We first establish the partial differential equations governing the higher-pole generating function. Based on these equations, we derive an integration recursion relation and solve it iteratively. This approach enables us to explore the analytical structure of higher-pole reduction and provides a valuable tool for generating reduction coefficients efficiently.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13848-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13848-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the concept of generating function has been employed in one-loop reduction. For one-loop integrals encompassing arbitrary tensor ranks and higher-pole contributions, the generating function can be decomposed into a tensor part and a higher-pole part. While the tensor component has been thoroughly addressed in recent studies, there remains a lack of satisfactory investigations regarding the higher-pole part. In this work, we completely solve the problem. We first establish the partial differential equations governing the higher-pole generating function. Based on these equations, we derive an integration recursion relation and solve it iteratively. This approach enables us to explore the analytical structure of higher-pole reduction and provides a valuable tool for generating reduction coefficients efficiently.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.