Sign Language Video Generation from Text Using Generative Adversarial Networks

IF 1 Q4 OPTICS
R. Sreemathy, Param Chordiya, Soumya Khurana, Mousami Turuk
{"title":"Sign Language Video Generation from Text Using Generative Adversarial Networks","authors":"R. Sreemathy,&nbsp;Param Chordiya,&nbsp;Soumya Khurana,&nbsp;Mousami Turuk","doi":"10.3103/S1060992X24700851","DOIUrl":null,"url":null,"abstract":"<p>This work presents a technique developed by utilizing Generative Adversarial Networks (GANs) to generate Sign Language videos. Sign Language is the main mode of communication for people in the hearing impaired community. The process of teaching sign language is difficult as there are not a lot of tools available for this purpose. Generative artificial intelligence can be very helpful for this task as it is able to learn from the limited data and is able to generate various images and videos. In this work, Conditional GANs (cGANs) were employed to generate videos for Indian Sign Language (ISL) based on a text input. It is found that the results obtained from cGANs exhibit superior quality and control based on the performance metrics such as SSIM, FID and MSE values. The effectiveness of the cGANs in generating accurate and visually appealing sign language videos highlights their potential for teaching sign language and improving sign language communication systems.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 4","pages":"466 - 476"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a technique developed by utilizing Generative Adversarial Networks (GANs) to generate Sign Language videos. Sign Language is the main mode of communication for people in the hearing impaired community. The process of teaching sign language is difficult as there are not a lot of tools available for this purpose. Generative artificial intelligence can be very helpful for this task as it is able to learn from the limited data and is able to generate various images and videos. In this work, Conditional GANs (cGANs) were employed to generate videos for Indian Sign Language (ISL) based on a text input. It is found that the results obtained from cGANs exhibit superior quality and control based on the performance metrics such as SSIM, FID and MSE values. The effectiveness of the cGANs in generating accurate and visually appealing sign language videos highlights their potential for teaching sign language and improving sign language communication systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信