Recycling of subduction-modified refractory mantle beneath the Marion Rise, Southwest Indian Ridge

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yin-Zheng Lin, Chuan-Zhou Liu, Wei-Qi Zhang, Zhen-Yu Zhang, Chang Zhang, Tong Liu
{"title":"Recycling of subduction-modified refractory mantle beneath the Marion Rise, Southwest Indian Ridge","authors":"Yin-Zheng Lin,&nbsp;Chuan-Zhou Liu,&nbsp;Wei-Qi Zhang,&nbsp;Zhen-Yu Zhang,&nbsp;Chang Zhang,&nbsp;Tong Liu","doi":"10.1007/s00410-025-02205-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Marion Rise, located in the central portion of the Southwest Indian Ridge (SWIR), marks a relief high but is overall covered with a thin crust, and thus is inferred to be supported by depleted buoyant mantle. However, direct evidence of the regional mantle compositions from abyssal peridotites are still rare for such a hypothesis. This study presents whole rock and mineral compositions of 34 abyssal peridotites dredged from 7 sites between the Discovery and Indomed fracture zones on the Marion Rise. The samples are divided into low-Cr# (Cr# = 0.23–0.33) and high-Cr# (Cr# = 0.40–0.57) groups. The high-Cr# group samples display highly refractory characteristics (whole rock Al<sub>2</sub>O<sub>3</sub> contents down to 0.52 wt%), which are reinforced by the depleted pyroxene compositions that indicate partial melting of up to &gt; 18%. Nonetheless, the overall high extents of melting indicated by the peridotites are inconsistent with the regional thin crust, hence require an inherited origin of the melting signatures. Moreover, the Ti and Yb (Y) concentrations of clinopyroxenes (orthopyroxenes) in the high-Cr# group are too depleted to be residues of anhydrous melting at mid-ocean ridges, but instead suggest for a hydrous melting history near subduction zones. Collectively, we fill in a piece of the puzzle of mantle heterogeneity beneath the SWIR, by providing solid evidence for the existence of a highly refractory mantle beneath the Marion Rise. These mantle components carry subduction-modified characteristics, and very likely have a recycled mantle wedge origin.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-025-02205-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Marion Rise, located in the central portion of the Southwest Indian Ridge (SWIR), marks a relief high but is overall covered with a thin crust, and thus is inferred to be supported by depleted buoyant mantle. However, direct evidence of the regional mantle compositions from abyssal peridotites are still rare for such a hypothesis. This study presents whole rock and mineral compositions of 34 abyssal peridotites dredged from 7 sites between the Discovery and Indomed fracture zones on the Marion Rise. The samples are divided into low-Cr# (Cr# = 0.23–0.33) and high-Cr# (Cr# = 0.40–0.57) groups. The high-Cr# group samples display highly refractory characteristics (whole rock Al2O3 contents down to 0.52 wt%), which are reinforced by the depleted pyroxene compositions that indicate partial melting of up to > 18%. Nonetheless, the overall high extents of melting indicated by the peridotites are inconsistent with the regional thin crust, hence require an inherited origin of the melting signatures. Moreover, the Ti and Yb (Y) concentrations of clinopyroxenes (orthopyroxenes) in the high-Cr# group are too depleted to be residues of anhydrous melting at mid-ocean ridges, but instead suggest for a hydrous melting history near subduction zones. Collectively, we fill in a piece of the puzzle of mantle heterogeneity beneath the SWIR, by providing solid evidence for the existence of a highly refractory mantle beneath the Marion Rise. These mantle components carry subduction-modified characteristics, and very likely have a recycled mantle wedge origin.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信