{"title":"Computer Analysis of EPR Spectra of 31P Atom Quantum Pair Embedded in Spinless Isotope 28Si Substrate","authors":"S. N. Dobryakov, V. V. Privezentsev","doi":"10.3103/S1060992X24700826","DOIUrl":null,"url":null,"abstract":"<p>In this paper we use EPR spectrums to explore interactions between elements of a quantum pair <sup>31</sup>P–<sup>31</sup>P embedded into <sup>28</sup>Si isotope substrate supposing that several silicon atoms separate phosphorus isotopes. The EPR method allows us to identify at a quantum level mechanisms of interaction between the phosphorus atoms and to analyze the influence of the silicon substrate on the spin-spin interaction between <sup>31</sup>P atoms in the quantum pairs. We also examined possibilities to control these interactions. When simulating, we take into account scalar and vector exchange interactions as well as a dipole interaction between unpaired electrons of <sup>31</sup>P atoms. We suppose that an indirect dipole-dipole interaction is carried out via a system of conjugated 3<i>d</i>-orbits and by means of a polarization of the medium (the <sup>28</sup>Si isotope substrate). The exchange interaction between the spins (the magnetic moments) of electrons of the two phosphorus atoms also is carried out via the polarized medium. We discuss the obtained simulated EPR spectrums.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 4","pages":"422 - 428"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we use EPR spectrums to explore interactions between elements of a quantum pair 31P–31P embedded into 28Si isotope substrate supposing that several silicon atoms separate phosphorus isotopes. The EPR method allows us to identify at a quantum level mechanisms of interaction between the phosphorus atoms and to analyze the influence of the silicon substrate on the spin-spin interaction between 31P atoms in the quantum pairs. We also examined possibilities to control these interactions. When simulating, we take into account scalar and vector exchange interactions as well as a dipole interaction between unpaired electrons of 31P atoms. We suppose that an indirect dipole-dipole interaction is carried out via a system of conjugated 3d-orbits and by means of a polarization of the medium (the 28Si isotope substrate). The exchange interaction between the spins (the magnetic moments) of electrons of the two phosphorus atoms also is carried out via the polarized medium. We discuss the obtained simulated EPR spectrums.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.