A. A. Nastulyavichus, E. V. Ulturgasheva, S. I. Kudryashov
{"title":"Nanosecond Fabrication of Hyperdoped Silicon","authors":"A. A. Nastulyavichus, E. V. Ulturgasheva, S. I. Kudryashov","doi":"10.3103/S1068335624602036","DOIUrl":null,"url":null,"abstract":"<p>Under the action of multipulse (≈40‒100 pulses per point) laser radiation at a wavelength of 532 nm and a pulse duration of 10 ns in an atmosphere of SF<sub>6</sub> gas, structures doped with a sulfur donor impurity are fabricated on the silicon surface. The topography of the laser-structured surface is characterized by scanning electron microscopy (SEM). Energy-dispersive X-ray microanalysis of the surface layer is indicative of the presence of up to ≈2 at % of the doping donor sulfur impurity. Fourier-IR spectroscopy shows broadband absorption for the structured samples. Using the Raman spectroscopy data, the appearance of an amorphous phase in structured silicon is demonstrated and the sizes of nanocrystallites are estimated to be ~4‒20 nm.</p>","PeriodicalId":503,"journal":{"name":"Bulletin of the Lebedev Physics Institute","volume":"51 12","pages":"583 - 588"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Lebedev Physics Institute","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1068335624602036","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Under the action of multipulse (≈40‒100 pulses per point) laser radiation at a wavelength of 532 nm and a pulse duration of 10 ns in an atmosphere of SF6 gas, structures doped with a sulfur donor impurity are fabricated on the silicon surface. The topography of the laser-structured surface is characterized by scanning electron microscopy (SEM). Energy-dispersive X-ray microanalysis of the surface layer is indicative of the presence of up to ≈2 at % of the doping donor sulfur impurity. Fourier-IR spectroscopy shows broadband absorption for the structured samples. Using the Raman spectroscopy data, the appearance of an amorphous phase in structured silicon is demonstrated and the sizes of nanocrystallites are estimated to be ~4‒20 nm.
期刊介绍:
Bulletin of the Lebedev Physics Institute is an international peer reviewed journal that publishes results of new original experimental and theoretical studies on all topics of physics: theoretical physics; atomic and molecular physics; nuclear physics; optics; lasers; condensed matter; physics of solids; biophysics, and others.