Design and optimization of distributed energy management system based on edge computing and machine learning

Q2 Energy
Nan Feng, Conglin Ran
{"title":"Design and optimization of distributed energy management system based on edge computing and machine learning","authors":"Nan Feng,&nbsp;Conglin Ran","doi":"10.1186/s42162-025-00471-2","DOIUrl":null,"url":null,"abstract":"<div><p>With the continuous growth of global energy demand and the rapid development of renewable energy, traditional energy management systems are facing enormous challenges, especially in the scheduling and optimization of distributed energy. In order to meet these challenges, edge computing and machine learning technology are widely used in the design and optimization of distributed energy management systems. This paper proposes a design scheme of distributed energy management system based on edge computing and machine learning, and optimizes it. The system reduces data transmission latency and improves energy scheduling efficiency by performing real-time data processing and analysis on edge devices. The experimental results show that the proposed system performs outstandingly in optimizing energy allocation, reducing energy consumption, and improving system response speed. Specifically, by using machine learning algorithms for dynamic scheduling of distributed energy resources, the system can achieve an energy utilization rate 12% higher than traditional scheduling methods, and reduce energy waste by 18% in the event of fluctuations in energy demand. In addition, the system response time has been improved by 30% compared to traditional cloud-based solutions. These optimizations not only reduce energy costs, but also effectively enhance the sustainability and intelligence level of distributed energy systems. The contribution of this research lies in the combination of edge computing and machine learning technology to achieve real-time optimal control of the distributed energy system, reduce the system’s computing load and delay, and improve the accuracy and flexibility of energy management through data-driven methods. Future research can further explore how to integrate multiple machine learning algorithms to optimize energy scheduling strategies and improve the system’s adaptability in complex environments.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00471-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00471-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

With the continuous growth of global energy demand and the rapid development of renewable energy, traditional energy management systems are facing enormous challenges, especially in the scheduling and optimization of distributed energy. In order to meet these challenges, edge computing and machine learning technology are widely used in the design and optimization of distributed energy management systems. This paper proposes a design scheme of distributed energy management system based on edge computing and machine learning, and optimizes it. The system reduces data transmission latency and improves energy scheduling efficiency by performing real-time data processing and analysis on edge devices. The experimental results show that the proposed system performs outstandingly in optimizing energy allocation, reducing energy consumption, and improving system response speed. Specifically, by using machine learning algorithms for dynamic scheduling of distributed energy resources, the system can achieve an energy utilization rate 12% higher than traditional scheduling methods, and reduce energy waste by 18% in the event of fluctuations in energy demand. In addition, the system response time has been improved by 30% compared to traditional cloud-based solutions. These optimizations not only reduce energy costs, but also effectively enhance the sustainability and intelligence level of distributed energy systems. The contribution of this research lies in the combination of edge computing and machine learning technology to achieve real-time optimal control of the distributed energy system, reduce the system’s computing load and delay, and improve the accuracy and flexibility of energy management through data-driven methods. Future research can further explore how to integrate multiple machine learning algorithms to optimize energy scheduling strategies and improve the system’s adaptability in complex environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信