{"title":"Primary scalar hair in Gauss–Bonnet black holes with Thurston horizons","authors":"Luis Guajardo, Julio Oliva","doi":"10.1140/epjc/s10052-025-13869-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we construct novel asymptotically locally AdS<span>\\(_5\\)</span> black hole solutions of Einstein–Gauss–Bonnet theory at the Chern–Simons point, supported by a scalar field that generates a primary hair. The strength of the scalar field is governed by an independent integration constant; when this constant vanishes, the spacetime reduces to a black hole geometry devoid of hair. The existence of these solutions is intrinsically tied to the horizon metric, which is modeled by three non-trivial Thurston geometries: Nil, Solv, and <span>\\(SL(2,{\\mathbb {R}}).\\)</span> The quadratic part of the scalar field action corresponds to a conformally coupled scalar in five dimensions -an invariance of the matter sector that is explicitly broken by the introduction of a quartic self-interaction. These black holes are characterized by two distinct parameters: the horizon radius and the temperature. Notably, there exists a straight line in this parameter space along which the horizon geometry exhibits enhanced isometries, corresponding to solutions previously reported in <i>JHEP 02, 014 (2014)</i>. Away from this line, for a fixed horizon radius and temperatures above or below a critical value, the metric’s isometries undergo spontaneous breaking. Employing the Regge–Teitelboim approach, we compute the mass and entropy of these solutions, both of which vanish. Despite this, only one of the integration constants can be interpreted as hair, as the other modifies the local geometry at the conformal boundary. Finally, for Solv horizon geometries, we extend these hairy solutions to six dimensions.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13869-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13869-9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we construct novel asymptotically locally AdS\(_5\) black hole solutions of Einstein–Gauss–Bonnet theory at the Chern–Simons point, supported by a scalar field that generates a primary hair. The strength of the scalar field is governed by an independent integration constant; when this constant vanishes, the spacetime reduces to a black hole geometry devoid of hair. The existence of these solutions is intrinsically tied to the horizon metric, which is modeled by three non-trivial Thurston geometries: Nil, Solv, and \(SL(2,{\mathbb {R}}).\) The quadratic part of the scalar field action corresponds to a conformally coupled scalar in five dimensions -an invariance of the matter sector that is explicitly broken by the introduction of a quartic self-interaction. These black holes are characterized by two distinct parameters: the horizon radius and the temperature. Notably, there exists a straight line in this parameter space along which the horizon geometry exhibits enhanced isometries, corresponding to solutions previously reported in JHEP 02, 014 (2014). Away from this line, for a fixed horizon radius and temperatures above or below a critical value, the metric’s isometries undergo spontaneous breaking. Employing the Regge–Teitelboim approach, we compute the mass and entropy of these solutions, both of which vanish. Despite this, only one of the integration constants can be interpreted as hair, as the other modifies the local geometry at the conformal boundary. Finally, for Solv horizon geometries, we extend these hairy solutions to six dimensions.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.