Overcoming bottlenecks towards complete biocatalytic conversions and complete product recovery

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Roland Wohlgemuth
{"title":"Overcoming bottlenecks towards complete biocatalytic conversions and complete product recovery","authors":"Roland Wohlgemuth","doi":"10.1039/D4RE00349G","DOIUrl":null,"url":null,"abstract":"<p >Biocatalysis has become an attractive and powerful technology for resource-efficient conversions of starting materials to products because of selectivity, safety, health, environment and sustainability benefits. One of the key success factors for any synthetic method has traditionally been the yield of the product which has been isolated from the reaction mixture after the conversion and purified to the required purity. The conversion economy and the final product recovery, which determine the isolated yield of a product, are therefore also of key importance for biocatalytic processes, from biocatalytic single-step to multi-step reactions and total synthesis. In order to progress towards complete biocatalytic conversions and to aim at completely recovering and isolating the pure product, relevant thermodynamic, kinetic and other constraints leading to incomplete biocatalytic conversions and incomplete product recovery need to be identified and overcome. The methods and tools for overcoming various types of bottlenecks are growing and can provide valuable guidance for selecting the most suitable approaches towards the goal of achieving 100% yield of the isolated pure product for a specific biocatalytic conversion.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 2","pages":" 278-293"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00349g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00349g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biocatalysis has become an attractive and powerful technology for resource-efficient conversions of starting materials to products because of selectivity, safety, health, environment and sustainability benefits. One of the key success factors for any synthetic method has traditionally been the yield of the product which has been isolated from the reaction mixture after the conversion and purified to the required purity. The conversion economy and the final product recovery, which determine the isolated yield of a product, are therefore also of key importance for biocatalytic processes, from biocatalytic single-step to multi-step reactions and total synthesis. In order to progress towards complete biocatalytic conversions and to aim at completely recovering and isolating the pure product, relevant thermodynamic, kinetic and other constraints leading to incomplete biocatalytic conversions and incomplete product recovery need to be identified and overcome. The methods and tools for overcoming various types of bottlenecks are growing and can provide valuable guidance for selecting the most suitable approaches towards the goal of achieving 100% yield of the isolated pure product for a specific biocatalytic conversion.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信