Energy-storage materials with stable structure through carbide slag modification by acid impregnation and manganese doping†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Caiyun Gao, Xiangli Liu, Yuan Zhang, Fei Jin and Dong Li
{"title":"Energy-storage materials with stable structure through carbide slag modification by acid impregnation and manganese doping†","authors":"Caiyun Gao, Xiangli Liu, Yuan Zhang, Fei Jin and Dong Li","doi":"10.1039/D4RE00424H","DOIUrl":null,"url":null,"abstract":"<p >Herein, calcium-based energy-storage materials that directly absorb solar energy were prepared through wet modification of carbide slag (solid waste). It was found that at a carbonization temperature of 700 °C and calcination temperature of 800 °C, the carbonation conversion rate of 50%FA-100 : 10 Mn remains 66.7% after 10 cycles, which is only 6.4% lower than the initial rate. Through ultraviolet spectrophotometry, it was found that after the addition of a small amount of manganese nitrate, the average absorbance of the energy-storage material was 44.14% higher than that of carbide slag. The use of formic acid as a solvent to acidify modified calcium carbide slag for the preparation of energy-storage materials improves the internal structure of the energy-storage materials, which facilitates the entrance of carbon dioxide into the energy-storage material during the diffusion reaction stage to initiate carbonation reaction. The kinetic calculation shows that the activation energy of the modified energy-storage material decreases by 11.3 kJ mol<small><sup>−1</sup></small> in the carbonation reaction stage and 9.25 kJ mol<small><sup>−1</sup></small> in the calcination reaction stage. After the activation energy decreases, the carbonation/calcination reaction is easier to carry out; thus, the reaction time is reduced.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 2","pages":" 428-439"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00424h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, calcium-based energy-storage materials that directly absorb solar energy were prepared through wet modification of carbide slag (solid waste). It was found that at a carbonization temperature of 700 °C and calcination temperature of 800 °C, the carbonation conversion rate of 50%FA-100 : 10 Mn remains 66.7% after 10 cycles, which is only 6.4% lower than the initial rate. Through ultraviolet spectrophotometry, it was found that after the addition of a small amount of manganese nitrate, the average absorbance of the energy-storage material was 44.14% higher than that of carbide slag. The use of formic acid as a solvent to acidify modified calcium carbide slag for the preparation of energy-storage materials improves the internal structure of the energy-storage materials, which facilitates the entrance of carbon dioxide into the energy-storage material during the diffusion reaction stage to initiate carbonation reaction. The kinetic calculation shows that the activation energy of the modified energy-storage material decreases by 11.3 kJ mol−1 in the carbonation reaction stage and 9.25 kJ mol−1 in the calcination reaction stage. After the activation energy decreases, the carbonation/calcination reaction is easier to carry out; thus, the reaction time is reduced.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信