Metallic nickel-anchored biochar with non-metallic heteroatom modification: remarkably effective catalyst for steam reforming of methane†

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yu-e Zhao, Jinxiao Li, Ao Xu, Yulong Liu, Minghui Lian, Jing Zhang, Hexiang Zhong, Chunhua Yang, Rensheng Song and Liwei Pan
{"title":"Metallic nickel-anchored biochar with non-metallic heteroatom modification: remarkably effective catalyst for steam reforming of methane†","authors":"Yu-e Zhao, Jinxiao Li, Ao Xu, Yulong Liu, Minghui Lian, Jing Zhang, Hexiang Zhong, Chunhua Yang, Rensheng Song and Liwei Pan","doi":"10.1039/D4RE00431K","DOIUrl":null,"url":null,"abstract":"<p >In this paper, the effect of H<small><sub>3</sub></small>PO<small><sub>4</sub></small>-activated biochar on nickel-based catalysts for steam methane reforming (SMR) was explored. FTIR, BET, XRD, Raman, TEM, HRTEM, H<small><sub>2</sub></small>-TPR and XPS analyses were used to characterize the supports and catalysts. The results showed that the activation of H<small><sub>3</sub></small>PO<small><sub>4</sub></small> regulates the pore structure of the support and promotes the development of micropores into mesopores. Meanwhile, H<small><sub>3</sub></small>PO<small><sub>4</sub></small> introduced more functional groups to promote the dispersion of Ni, which reduced the average particle size of the catalyst from 32 nm to 19 nm. In addition, it increased the number of defects of the catalyst and inhibited carbon deposition during the SMR process, which improved the activity and stability. The catalyst shows best performance at 650 °C, and the CH<small><sub>4</sub></small> conversion reaches 80.89%. After 80 h, the conversion decreased by only 2%.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 2","pages":" 477-487"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00431k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the effect of H3PO4-activated biochar on nickel-based catalysts for steam methane reforming (SMR) was explored. FTIR, BET, XRD, Raman, TEM, HRTEM, H2-TPR and XPS analyses were used to characterize the supports and catalysts. The results showed that the activation of H3PO4 regulates the pore structure of the support and promotes the development of micropores into mesopores. Meanwhile, H3PO4 introduced more functional groups to promote the dispersion of Ni, which reduced the average particle size of the catalyst from 32 nm to 19 nm. In addition, it increased the number of defects of the catalyst and inhibited carbon deposition during the SMR process, which improved the activity and stability. The catalyst shows best performance at 650 °C, and the CH4 conversion reaches 80.89%. After 80 h, the conversion decreased by only 2%.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信