Crystal/magnetic structure and cation inversion in hydrothermally synthesized MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanoparticles: a neutron powder diffraction study†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2025-01-15 DOI:10.1039/D4CE01001A
Henrik L. Andersen, Matilde Saura-Múzquiz, Cecilia Granados-Miralles, Rebekka Klemmt, Espen D. Bøjesen and Mogens Christensen
{"title":"Crystal/magnetic structure and cation inversion in hydrothermally synthesized MnFe2O4, CoFe2O4, NiFe2O4, and ZnFe2O4 nanoparticles: a neutron powder diffraction study†","authors":"Henrik L. Andersen, Matilde Saura-Múzquiz, Cecilia Granados-Miralles, Rebekka Klemmt, Espen D. Bøjesen and Mogens Christensen","doi":"10.1039/D4CE01001A","DOIUrl":null,"url":null,"abstract":"<p >The crystal and magnetic structures of MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small>, CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>, NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> and ZnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanocrystallites are reported based on joint structural modelling of powder X-ray diffraction and neutron powder diffraction data. The nanoparticle samples were prepared using equivalent precursor preparation routes (co-precipitation of transition metal hydroxides using NH<small><sub>4</sub></small>OH) and identical hydrothermal synthesis conditions (steel autoclave, 200 °C, 1 hour), allowing the isolated effect of the divalent cation to be evaluated. The study uncovers how variations in cation site preferences, spinel inversion degree, and crystallite size, which are challenging to discern using conventional characterization techniques, distinctly influence the magnetic structures. Diffraction peak profile analysis and scanning transmission electron microscopy images show how MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> forms the largest crystallites (17.13(2) nm), followed by NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> (10.31(1) nm) and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> (7.92(1) nm), while ZnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> forms ultrafine nanoparticles of only 3.70(1) nm. The transition metal ions have different affinities for the tetrahedral and octahedral crystallographic sites as evident from the obtained spinel inversion degrees, <em>x</em>, [M<small><sup>2+</sup></small><small><sub>1−<em>x</em></sub></small>Fe<small><sup>3+</sup></small><small><sub><em>x</em></sub></small>]<small><sup>tet</sup></small>[M<small><sup>2+</sup></small><small><sub><em>x</em></sub></small>Fe<small><sup>3+</sup></small><small><sub>2−<em>x</em></sub></small>]<small><sup>oct</sup></small>O<small><sub>4</sub></small>. The MnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> and CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> nanocrystallites exhibit mixed/semi-inverse spinel structures with <em>x</em> = 0.87(3) and 0.954(6), respectively, while NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> is fully inverse (<em>x</em> = 1.00) and ZnFe<small><sub>2</sub></small>O<small><sub>4</sub></small> is closer to a normal spinel (<em>x</em> = 0.138(4)). The combination of neutron diffraction and magnetic measurements illustrates how cation identity impacts site occupancy, crystallite size, and magnetization, providing new insights into the design of ferrite-based nanomaterials for magnetic applications.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 6","pages":" 850-864"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ce/d4ce01001a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01001a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The crystal and magnetic structures of MnFe2O4, CoFe2O4, NiFe2O4 and ZnFe2O4 nanocrystallites are reported based on joint structural modelling of powder X-ray diffraction and neutron powder diffraction data. The nanoparticle samples were prepared using equivalent precursor preparation routes (co-precipitation of transition metal hydroxides using NH4OH) and identical hydrothermal synthesis conditions (steel autoclave, 200 °C, 1 hour), allowing the isolated effect of the divalent cation to be evaluated. The study uncovers how variations in cation site preferences, spinel inversion degree, and crystallite size, which are challenging to discern using conventional characterization techniques, distinctly influence the magnetic structures. Diffraction peak profile analysis and scanning transmission electron microscopy images show how MnFe2O4 forms the largest crystallites (17.13(2) nm), followed by NiFe2O4 (10.31(1) nm) and CoFe2O4 (7.92(1) nm), while ZnFe2O4 forms ultrafine nanoparticles of only 3.70(1) nm. The transition metal ions have different affinities for the tetrahedral and octahedral crystallographic sites as evident from the obtained spinel inversion degrees, x, [M2+1−xFe3+x]tet[M2+xFe3+2−x]octO4. The MnFe2O4 and CoFe2O4 nanocrystallites exhibit mixed/semi-inverse spinel structures with x = 0.87(3) and 0.954(6), respectively, while NiFe2O4 is fully inverse (x = 1.00) and ZnFe2O4 is closer to a normal spinel (x = 0.138(4)). The combination of neutron diffraction and magnetic measurements illustrates how cation identity impacts site occupancy, crystallite size, and magnetization, providing new insights into the design of ferrite-based nanomaterials for magnetic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信