Lorenzo Mantione;Tomas Garcia-Calva;Vanesa Fernandez-Cavero;Lucia Frosini;Daniel Moriñigo-Sotelo
{"title":"Broken Rotor Bar Detection in Closed Loop Inverter Fed Induction Motors Through Time-Frequency Techniques","authors":"Lorenzo Mantione;Tomas Garcia-Calva;Vanesa Fernandez-Cavero;Lucia Frosini;Daniel Moriñigo-Sotelo","doi":"10.1109/TIA.2024.3482271","DOIUrl":null,"url":null,"abstract":"In traction, automotive, and some industrial processes, the operation of the induction motor is set using speed. This creates an additional control loop that is external to the current controller that inverters already possess. While the impact of the latter control loop on fault detection in induction motors has already been studied, the influence of closed-loop speed control has not been explored enough. This paper presents the findings on the impact of PID speed control on the broken rotor bar fault detection. The study reveals that the constant corrective actions of the PID controller to correct the speed cause an increase in the noise level and spectral leakage around the first harmonic in the stator current spectrum that prevents fault detection. It is concluded that it is necessary to use time-frequency analysis techniques with excellent spectral resolution, such as the Dragon Transform or the Min-Norm technique.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 1","pages":"209-217"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720620/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In traction, automotive, and some industrial processes, the operation of the induction motor is set using speed. This creates an additional control loop that is external to the current controller that inverters already possess. While the impact of the latter control loop on fault detection in induction motors has already been studied, the influence of closed-loop speed control has not been explored enough. This paper presents the findings on the impact of PID speed control on the broken rotor bar fault detection. The study reveals that the constant corrective actions of the PID controller to correct the speed cause an increase in the noise level and spectral leakage around the first harmonic in the stator current spectrum that prevents fault detection. It is concluded that it is necessary to use time-frequency analysis techniques with excellent spectral resolution, such as the Dragon Transform or the Min-Norm technique.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.