{"title":"Bi-Level Planning of Microgrid Considering Seasonal Hydrogen Storage and Efficiency Degradation of Electrolyzer","authors":"Yanhui Xu;Zilin Deng","doi":"10.1109/TIA.2024.3522458","DOIUrl":null,"url":null,"abstract":"Microgrids that contain a high percentage of renewable energy face the challenge of having insufficient resources for long-term regulation of the energy balance. Seasonal hydrogen storage emerges as a promising option. To analyze the feasibility and economic viability of seasonal hydrogen storage in microgrids, this paper proposes a bi-level planning approach. First, considering the dynamic characteristics of electrolyzer power-efficiency-degradation, a linearized method for calculating the dynamic efficiency is proposed. Taking into account the randomness of the data, a data-driven Markov Chain Monte Carlo method is used to generate typical daily time series. The upper level of the bi-level model focuses on investment decisions for electrolyzer capacity and seasonal hydrogen storage, while the lower level optimizes system operational revenue and electrolyzer usage costs. Then, addressing the nonlinear term issue in optimization calculations, a piecewise McCormick envelope method considering the power characteristics of the electrolyzer is proposed to convexify the optimization problem. The results of the case study show that the proposed planning method can increase the annual revenue by 11% and 595% compared to only considering constant efficiency and fixed electrolyzer lifespan. Additionally, the convex relaxation method enhances convergence speed while maintaining solution accuracy.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 1","pages":"1385-1398"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816074/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Microgrids that contain a high percentage of renewable energy face the challenge of having insufficient resources for long-term regulation of the energy balance. Seasonal hydrogen storage emerges as a promising option. To analyze the feasibility and economic viability of seasonal hydrogen storage in microgrids, this paper proposes a bi-level planning approach. First, considering the dynamic characteristics of electrolyzer power-efficiency-degradation, a linearized method for calculating the dynamic efficiency is proposed. Taking into account the randomness of the data, a data-driven Markov Chain Monte Carlo method is used to generate typical daily time series. The upper level of the bi-level model focuses on investment decisions for electrolyzer capacity and seasonal hydrogen storage, while the lower level optimizes system operational revenue and electrolyzer usage costs. Then, addressing the nonlinear term issue in optimization calculations, a piecewise McCormick envelope method considering the power characteristics of the electrolyzer is proposed to convexify the optimization problem. The results of the case study show that the proposed planning method can increase the annual revenue by 11% and 595% compared to only considering constant efficiency and fixed electrolyzer lifespan. Additionally, the convex relaxation method enhances convergence speed while maintaining solution accuracy.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.