Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters

IF 4.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Daniel Glover;Anamika Dubey
{"title":"Learning Volt-VAR Droop Curves to Optimally Coordinate Photovoltaic (PV) Smart Inverters","authors":"Daniel Glover;Anamika Dubey","doi":"10.1109/TIA.2024.3472655","DOIUrl":null,"url":null,"abstract":"Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained <italic>Markov Decision Process</i> (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 1","pages":"859-871"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10704066/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based solutions for power systems operational tasks are earning more consideration as potential candidates to help overcome challenges brought upon by the aggressive integration of inverter-based resources (IBRs) in active distribution networks (ADNs). Despite achieving high evaluation accuracies, machine learning (ML) methods are not yet accepted at utility-scale primarily due to safety concerns and limited interpretability. This presents an opportunity for ML approaches which can satisfy both performance and regulatory requirements. In an effort to improve these shortcomings, this work proposes a robust Deep Reinforcement Learning (DRL) based model-free adaptive volt-VAR control (VVC) dispatch framework of solar photovoltaic (PV) smart inverters (SIs) for system-wide voltage regulation and loss reduction. The framework utilizes reward shaping with a barrier function (BF) filter to embed physical boundaries for Category B-type SIs specified by the IEEE 1547-2018 standard into the constrained Markov Decision Process (CMDP) formulation. Results carried out on the IEEE 123 bus test system show that the proposed method converges to a robust discrete policy offline, producing QV-droop curves compliant with IEEE 1547-2018, which outperform the baseline benchmark during overloaded conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Industry Applications
IEEE Transactions on Industry Applications 工程技术-工程:电子与电气
CiteScore
9.90
自引率
9.10%
发文量
747
审稿时长
3.3 months
期刊介绍: The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信