{"title":"Web-FTP: A Feature Transferring-Based Pre-Trained Model for Web Attack Detection","authors":"Zhenyu Guo;Qinghua Shang;Xin Li;Chengyi Li;Zijian Zhang;Zhuo Zhang;Jingjing Hu;Jincheng An;Chuanming Huang;Yang Chen;Yuguang Cai","doi":"10.1109/TKDE.2024.3512793","DOIUrl":null,"url":null,"abstract":"Web attack is a major threat to cyberspace security, so web attack detection models have become a critical task. Traditional supervised learning methods learn features of web attacks with large amounts of high-confidence labeled data, which are extremely expensive in the real world. Pre-trained models offer a novel solution with their ability to learn generic features on large unlabeled datasets. However, designing and deploying a pre-trained model for real-world web attack detection remains challenges. In this paper, we present a pre-trained model for web attack detection, including a pre-processing module, a pre-training module, and a deployment scheme. Our model significantly improves classification performance on several web attack detection datasets. Moreover, we deploy the model in real-world systems and show its potential for industrial applications.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 3","pages":"1495-1507"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854996/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Web attack is a major threat to cyberspace security, so web attack detection models have become a critical task. Traditional supervised learning methods learn features of web attacks with large amounts of high-confidence labeled data, which are extremely expensive in the real world. Pre-trained models offer a novel solution with their ability to learn generic features on large unlabeled datasets. However, designing and deploying a pre-trained model for real-world web attack detection remains challenges. In this paper, we present a pre-trained model for web attack detection, including a pre-processing module, a pre-training module, and a deployment scheme. Our model significantly improves classification performance on several web attack detection datasets. Moreover, we deploy the model in real-world systems and show its potential for industrial applications.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.