FRAME: Feature Rectification for Class Imbalance Learning

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xu Cheng;Fan Shi;Yao Zhang;Huan Li;Xiufeng Liu;Shengyong Chen
{"title":"FRAME: Feature Rectification for Class Imbalance Learning","authors":"Xu Cheng;Fan Shi;Yao Zhang;Huan Li;Xiufeng Liu;Shengyong Chen","doi":"10.1109/TKDE.2024.3523043","DOIUrl":null,"url":null,"abstract":"Class imbalance learning is a challenging task in machine learning applications. To balance training data, traditional class imbalance learning approaches, such as class resampling or reweighting, are commonly applied in the literature. However, these methods can have significant limitations, particularly in the presence of noisy data, missing values, or when applied to advanced learning paradigms like semi-supervised or federated learning. To address these limitations, this paper proposes a novel and theoretically-ensured latent <bold>F</b>eature <bold>R</b>ectification method for cl<bold>A</b>ss i<bold>M</b>balance l<bold>E</b>arning (FRAME). The proposed FRAME can automatically learn multiple centroids for each class in the latent space and then perform class balancing. Unlike data-level methods, FRAME balances feature in the latent space rather than the original space. Compared to algorithm-level methods, FRAME can distinguish different classes based on distance without the need to adjust the learning algorithms. Through latent feature rectification, FRAME can effectively mitigate contaminated noises/missing values without worrying about structural variations in the data. In order to accommodate a wider range of applications, this paper extends FRAME to the following three main learning paradigms: fully-supervised learning, semi-supervised learning, and federated learning. Extensive experiments on 10 binary-class datasets demonstrate that our FRAME can achieve competitive performance than the state-of-the-art methods and its robustness to noises/missing values.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 3","pages":"1167-1181"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816467/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Class imbalance learning is a challenging task in machine learning applications. To balance training data, traditional class imbalance learning approaches, such as class resampling or reweighting, are commonly applied in the literature. However, these methods can have significant limitations, particularly in the presence of noisy data, missing values, or when applied to advanced learning paradigms like semi-supervised or federated learning. To address these limitations, this paper proposes a novel and theoretically-ensured latent Feature Rectification method for clAss iMbalance lEarning (FRAME). The proposed FRAME can automatically learn multiple centroids for each class in the latent space and then perform class balancing. Unlike data-level methods, FRAME balances feature in the latent space rather than the original space. Compared to algorithm-level methods, FRAME can distinguish different classes based on distance without the need to adjust the learning algorithms. Through latent feature rectification, FRAME can effectively mitigate contaminated noises/missing values without worrying about structural variations in the data. In order to accommodate a wider range of applications, this paper extends FRAME to the following three main learning paradigms: fully-supervised learning, semi-supervised learning, and federated learning. Extensive experiments on 10 binary-class datasets demonstrate that our FRAME can achieve competitive performance than the state-of-the-art methods and its robustness to noises/missing values.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信