Wonse Jo;Ruiqi Wang;Baijian Yang;Daniel Foti;Mo Rastgaar;Byung-Cheol Min
{"title":"Cognitive Load-Based Affective Workload Allocation for Multihuman Multirobot Teams","authors":"Wonse Jo;Ruiqi Wang;Baijian Yang;Daniel Foti;Mo Rastgaar;Byung-Cheol Min","doi":"10.1109/THMS.2024.3509223","DOIUrl":null,"url":null,"abstract":"The interaction and collaboration between humans and multiple robots represent a novel field of research known as human multirobot systems. Adequately designed systems within this field allow teams composed of both humans and robots to work together effectively on tasks, such as monitoring, exploration, and search and rescue operations. This article presents a deep reinforcement learning-based affective workload allocation controller specifically for multihuman multirobot teams. The proposed controller can dynamically reallocate workloads based on the performance of the operators during collaborative missions with multirobot systems. The operators' performances are evaluated through the scores of a self-reported questionnaire (i.e., subjective measurement) and the results of a deep learning-based cognitive workload prediction algorithm that uses physiological and behavioral data (i.e., objective measurement). To evaluate the effectiveness of the proposed controller, we conduct an exploratory user experiment with various allocation strategies. The user experiment uses a multihuman multirobot CCTV monitoring task as an example and carry out comprehensive real-world experiments with 32 human subjects for both quantitative measurement and qualitative analysis. Our results demonstrate the performance and effectiveness of the proposed controller and highlight the importance of incorporating both subjective and objective measurements of the operators' cognitive workload as well as seeking consent for workload transitions, to enhance the performance of multihuman multirobot teams.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"55 1","pages":"23-36"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816723/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction and collaboration between humans and multiple robots represent a novel field of research known as human multirobot systems. Adequately designed systems within this field allow teams composed of both humans and robots to work together effectively on tasks, such as monitoring, exploration, and search and rescue operations. This article presents a deep reinforcement learning-based affective workload allocation controller specifically for multihuman multirobot teams. The proposed controller can dynamically reallocate workloads based on the performance of the operators during collaborative missions with multirobot systems. The operators' performances are evaluated through the scores of a self-reported questionnaire (i.e., subjective measurement) and the results of a deep learning-based cognitive workload prediction algorithm that uses physiological and behavioral data (i.e., objective measurement). To evaluate the effectiveness of the proposed controller, we conduct an exploratory user experiment with various allocation strategies. The user experiment uses a multihuman multirobot CCTV monitoring task as an example and carry out comprehensive real-world experiments with 32 human subjects for both quantitative measurement and qualitative analysis. Our results demonstrate the performance and effectiveness of the proposed controller and highlight the importance of incorporating both subjective and objective measurements of the operators' cognitive workload as well as seeking consent for workload transitions, to enhance the performance of multihuman multirobot teams.
期刊介绍:
The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.