Cognitive Load-Based Affective Workload Allocation for Multihuman Multirobot Teams

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wonse Jo;Ruiqi Wang;Baijian Yang;Daniel Foti;Mo Rastgaar;Byung-Cheol Min
{"title":"Cognitive Load-Based Affective Workload Allocation for Multihuman Multirobot Teams","authors":"Wonse Jo;Ruiqi Wang;Baijian Yang;Daniel Foti;Mo Rastgaar;Byung-Cheol Min","doi":"10.1109/THMS.2024.3509223","DOIUrl":null,"url":null,"abstract":"The interaction and collaboration between humans and multiple robots represent a novel field of research known as human multirobot systems. Adequately designed systems within this field allow teams composed of both humans and robots to work together effectively on tasks, such as monitoring, exploration, and search and rescue operations. This article presents a deep reinforcement learning-based affective workload allocation controller specifically for multihuman multirobot teams. The proposed controller can dynamically reallocate workloads based on the performance of the operators during collaborative missions with multirobot systems. The operators' performances are evaluated through the scores of a self-reported questionnaire (i.e., subjective measurement) and the results of a deep learning-based cognitive workload prediction algorithm that uses physiological and behavioral data (i.e., objective measurement). To evaluate the effectiveness of the proposed controller, we conduct an exploratory user experiment with various allocation strategies. The user experiment uses a multihuman multirobot CCTV monitoring task as an example and carry out comprehensive real-world experiments with 32 human subjects for both quantitative measurement and qualitative analysis. Our results demonstrate the performance and effectiveness of the proposed controller and highlight the importance of incorporating both subjective and objective measurements of the operators' cognitive workload as well as seeking consent for workload transitions, to enhance the performance of multihuman multirobot teams.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"55 1","pages":"23-36"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10816723/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction and collaboration between humans and multiple robots represent a novel field of research known as human multirobot systems. Adequately designed systems within this field allow teams composed of both humans and robots to work together effectively on tasks, such as monitoring, exploration, and search and rescue operations. This article presents a deep reinforcement learning-based affective workload allocation controller specifically for multihuman multirobot teams. The proposed controller can dynamically reallocate workloads based on the performance of the operators during collaborative missions with multirobot systems. The operators' performances are evaluated through the scores of a self-reported questionnaire (i.e., subjective measurement) and the results of a deep learning-based cognitive workload prediction algorithm that uses physiological and behavioral data (i.e., objective measurement). To evaluate the effectiveness of the proposed controller, we conduct an exploratory user experiment with various allocation strategies. The user experiment uses a multihuman multirobot CCTV monitoring task as an example and carry out comprehensive real-world experiments with 32 human subjects for both quantitative measurement and qualitative analysis. Our results demonstrate the performance and effectiveness of the proposed controller and highlight the importance of incorporating both subjective and objective measurements of the operators' cognitive workload as well as seeking consent for workload transitions, to enhance the performance of multihuman multirobot teams.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信