Yuxuan Zhou;Shang Gao;Dandan Guo;Xiaohui Wei;Jon Rokne;Hui Wang
{"title":"A Survey of Change Point Detection in Dynamic Graphs","authors":"Yuxuan Zhou;Shang Gao;Dandan Guo;Xiaohui Wei;Jon Rokne;Hui Wang","doi":"10.1109/TKDE.2024.3523857","DOIUrl":null,"url":null,"abstract":"Change point detection is crucial for identifying state transitions and anomalies in dynamic systems, with applications in network security, health care, and social network analysis. Dynamic systems are represented by dynamic graphs with spatial and temporal dimensions. As objects and their relations in a dynamic graph change over time, detecting these changes is essential. Numerous methods for change point detection in dynamic graphs have been developed, but no systematic review exists. This paper addresses this gap by introducing change point detection tasks in dynamic graphs, discussing two tasks based on input data types: detection in graph snapshot series (focusing on graph topology changes) and time series on graphs (focusing on changes in graph entities with temporal dynamics). We then present related challenges and applications, provide a comprehensive taxonomy of surveyed methods, including datasets and evaluation metrics, and discuss promising research directions.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 3","pages":"1030-1048"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10817616/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Change point detection is crucial for identifying state transitions and anomalies in dynamic systems, with applications in network security, health care, and social network analysis. Dynamic systems are represented by dynamic graphs with spatial and temporal dimensions. As objects and their relations in a dynamic graph change over time, detecting these changes is essential. Numerous methods for change point detection in dynamic graphs have been developed, but no systematic review exists. This paper addresses this gap by introducing change point detection tasks in dynamic graphs, discussing two tasks based on input data types: detection in graph snapshot series (focusing on graph topology changes) and time series on graphs (focusing on changes in graph entities with temporal dynamics). We then present related challenges and applications, provide a comprehensive taxonomy of surveyed methods, including datasets and evaluation metrics, and discuss promising research directions.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.