Physical Informed-Inspired Deep Reinforcement Learning Based Bi-Level Programming for Microgrid Scheduling

IF 4.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Li;Jiankai Gao;Yuanzheng Li;Chen Chen;Sen Li;Mohammad Shahidehpour;Zhe Chen
{"title":"Physical Informed-Inspired Deep Reinforcement Learning Based Bi-Level Programming for Microgrid Scheduling","authors":"Yang Li;Jiankai Gao;Yuanzheng Li;Chen Chen;Sen Li;Mohammad Shahidehpour;Zhe Chen","doi":"10.1109/TIA.2024.3522486","DOIUrl":null,"url":null,"abstract":"To coordinate the interests of operator and users in a microgrid under complex and changeable operating conditions, this paper proposes a microgrid scheduling model considering the thermal flexibility of thermostatically controlled loads and demand response by leveraging physical informed-inspired deep reinforcement learning (DRL) based bi-level programming. To overcome the non-convex limitations of Karush–Kuhn–Tucker (KKT)-based methods, a novel optimization solution method based on DRL theory is proposed to handle the bi-level programming through alternate iterations between levels. Specifically, by combining a DRL algorithm named asynchronous advantage actor-critic (A3C) and automated machine learning-prioritized experience replay (AutoML-PER) strategy to improve the generalization performance of A3C to address the above problems, an improved A3C algorithm, called AutoML-PER-A3C, is designed to solve the upper-level problem; while the DOCPLEX optimizer is adopted to address the lower-level problem. In this solution process, AutoML is used to automatically optimize hyperparameters and PER improves learning efficiency and quality by extracting the most valuable samples. The test results demonstrate that the presented approach manages to reconcile the interests between multiple stakeholders in MG by fully exploiting various flexibility resources. Furthermore, in terms of economic viability and computational efficiency, the proposal vastly exceeds other advanced reinforcement learning methods.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 1","pages":"1488-1500"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816077/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To coordinate the interests of operator and users in a microgrid under complex and changeable operating conditions, this paper proposes a microgrid scheduling model considering the thermal flexibility of thermostatically controlled loads and demand response by leveraging physical informed-inspired deep reinforcement learning (DRL) based bi-level programming. To overcome the non-convex limitations of Karush–Kuhn–Tucker (KKT)-based methods, a novel optimization solution method based on DRL theory is proposed to handle the bi-level programming through alternate iterations between levels. Specifically, by combining a DRL algorithm named asynchronous advantage actor-critic (A3C) and automated machine learning-prioritized experience replay (AutoML-PER) strategy to improve the generalization performance of A3C to address the above problems, an improved A3C algorithm, called AutoML-PER-A3C, is designed to solve the upper-level problem; while the DOCPLEX optimizer is adopted to address the lower-level problem. In this solution process, AutoML is used to automatically optimize hyperparameters and PER improves learning efficiency and quality by extracting the most valuable samples. The test results demonstrate that the presented approach manages to reconcile the interests between multiple stakeholders in MG by fully exploiting various flexibility resources. Furthermore, in terms of economic viability and computational efficiency, the proposal vastly exceeds other advanced reinforcement learning methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Industry Applications
IEEE Transactions on Industry Applications 工程技术-工程:电子与电气
CiteScore
9.90
自引率
9.10%
发文量
747
审稿时长
3.3 months
期刊介绍: The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信