{"title":"Micro Many-Objective Evolutionary Algorithm With Knowledge Transfer","authors":"Hu Peng;Zhongtian Luo;Tian Fang;Qingfu Zhang","doi":"10.1109/TETCI.2024.3451309","DOIUrl":null,"url":null,"abstract":"Computational effectiveness and limited resources in evolutionary algorithms are interdependently handled during the working of low-power microprocessors for real-world problems, particularly in many-objective evolutionary algorithms (MaOEAs). In this respect, the balance between them will be broken by evolutionary algorithms with a normal-sized population, but which doesn't include a micro population. To tackle this issue, this paper proposes a micro many-objective evolutionary algorithm with knowledge transfer (<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>MaOEA). To address the oversight that knowledge is often not considered enough between niches, the knowledge-transfer strategy is proposed to bolster each unoptimized niche through optimizing adjacent niches, which enables niches to generate better individuals. Meanwhile, a two-stage mechanism based on fuzzy logic is designed to settle the conflict between convergence and diversity in many-objective optimization problems. Through efficient fuzzy logic decision-making, the mechanism maintains different properties of the population at different stages. Different MaOEAs and micro multi-objective evolutionary algorithms were compared on benchmark test problems DTLZ, MaF, and WFG, and the results showed that <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>MaOEA has an excellent performance. In addition, it also conducted simulation on two real-world problems, MPDMP and MLDMP, based on a low-power microprocessor. The results indicated the applicability of <inline-formula><tex-math>$\\mu$</tex-math></inline-formula>MaOEA for low-power microprocessor optimization.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"9 1","pages":"43-56"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10670082/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Computational effectiveness and limited resources in evolutionary algorithms are interdependently handled during the working of low-power microprocessors for real-world problems, particularly in many-objective evolutionary algorithms (MaOEAs). In this respect, the balance between them will be broken by evolutionary algorithms with a normal-sized population, but which doesn't include a micro population. To tackle this issue, this paper proposes a micro many-objective evolutionary algorithm with knowledge transfer ($\mu$MaOEA). To address the oversight that knowledge is often not considered enough between niches, the knowledge-transfer strategy is proposed to bolster each unoptimized niche through optimizing adjacent niches, which enables niches to generate better individuals. Meanwhile, a two-stage mechanism based on fuzzy logic is designed to settle the conflict between convergence and diversity in many-objective optimization problems. Through efficient fuzzy logic decision-making, the mechanism maintains different properties of the population at different stages. Different MaOEAs and micro multi-objective evolutionary algorithms were compared on benchmark test problems DTLZ, MaF, and WFG, and the results showed that $\mu$MaOEA has an excellent performance. In addition, it also conducted simulation on two real-world problems, MPDMP and MLDMP, based on a low-power microprocessor. The results indicated the applicability of $\mu$MaOEA for low-power microprocessor optimization.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.