Nonlinear trajectory tracking with a 6DOF AUV using an MRAFC controller

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Lugui Paolo Fenco Bravo;Carlos Gustavo Pérez Zuñiga
{"title":"Nonlinear trajectory tracking with a 6DOF AUV using an MRAFC controller","authors":"Lugui Paolo Fenco Bravo;Carlos Gustavo Pérez Zuñiga","doi":"10.1109/TLA.2025.10851362","DOIUrl":null,"url":null,"abstract":"New technologies such as AUVs are used for marine exploration, considered a widespread solution in ocean monitoring, whose conventional controllers such as PID or LQR present inaccuracy in the path traversal and instability when faced with disturbances. Such that, in order to achieve sufficient precision in the path traversal and to be able to measure seabed parameters, the design of a Reference Model Adaptive Fuzzy Controller (MRAFC) is proposed. Which is a control strategy based on a combination of fuzzy systems theories using the Takagy- Sugeno model and adaptive control laws, respecting Lyapunovs nonlinear control theories to generate a robust control against inherent disturbances of the environment. Thus, the results obtained when comparing the MRAFC controller versus LQR and MRAC test controllers show better performance in different scenarios. Where the first scenario is ideal conditions, whose result is similar when the AUV is close to the origin and unstable in the LQR controller when it moves away from the design convergence point. A second scenario is considered the disturbances, obtaining unstable behaviors from the moment of the disturbance in the LQR and MRAC controllers, observing overstresses in the control variable causing chattering effect. While the last scenario is dedicated to recreate an environment with noise affecting the reading of the vehicle variables where only the MRAFC control law is able to compensate and control in a hostile environment. Therefore, based on the results of this research it is possible to identify the MRAFC controller as suitable for AUV where precision and stability are necessary.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 2","pages":"160-171"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10851362","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10851362/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

New technologies such as AUVs are used for marine exploration, considered a widespread solution in ocean monitoring, whose conventional controllers such as PID or LQR present inaccuracy in the path traversal and instability when faced with disturbances. Such that, in order to achieve sufficient precision in the path traversal and to be able to measure seabed parameters, the design of a Reference Model Adaptive Fuzzy Controller (MRAFC) is proposed. Which is a control strategy based on a combination of fuzzy systems theories using the Takagy- Sugeno model and adaptive control laws, respecting Lyapunovs nonlinear control theories to generate a robust control against inherent disturbances of the environment. Thus, the results obtained when comparing the MRAFC controller versus LQR and MRAC test controllers show better performance in different scenarios. Where the first scenario is ideal conditions, whose result is similar when the AUV is close to the origin and unstable in the LQR controller when it moves away from the design convergence point. A second scenario is considered the disturbances, obtaining unstable behaviors from the moment of the disturbance in the LQR and MRAC controllers, observing overstresses in the control variable causing chattering effect. While the last scenario is dedicated to recreate an environment with noise affecting the reading of the vehicle variables where only the MRAFC control law is able to compensate and control in a hostile environment. Therefore, based on the results of this research it is possible to identify the MRAFC controller as suitable for AUV where precision and stability are necessary.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信