Decentralized Federated Learning Algorithm Under Adversary Eavesdropping

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Lei Xu;Danya Xu;Xinlei Yi;Chao Deng;Tianyou Chai;Tao Yang
{"title":"Decentralized Federated Learning Algorithm Under Adversary Eavesdropping","authors":"Lei Xu;Danya Xu;Xinlei Yi;Chao Deng;Tianyou Chai;Tao Yang","doi":"10.1109/JAS.2024.125079","DOIUrl":null,"url":null,"abstract":"In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy. In classical federated learning, the communication channel between the devices poses a potential risk of compromising private information. To reduce the risk of adversary eavesdropping in the communication channel, we propose TRADE (transmit difference weight) concept. This concept replaces the decentralized federated learning algorithm's transmitted weight parameters with differential weight parameters, enhancing the privacy data against eavesdropping. Subsequently, by integrating the TRADE concept with the primal-dual stochastic gradient descent (SGD) algorithm, we propose a decentralized TRADE primal-dual SGD algorithm. We demonstrate that our proposed algorithm's convergence properties are the same as those of the primal-dual SGD algorithm while providing enhanced privacy protection. We validate the algorithm's performance on fault diagnosis task using the Case Western Reserve University dataset, and image classification tasks using the CIFAR-10 and CIFAR-100 datasets, revealing model accuracy comparable to centralized federated learning. Additionally, the experiments confirm the algorithm's privacy protection capability.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 2","pages":"448-456"},"PeriodicalIF":15.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10846932/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the decentralized federated learning problem, which involves the collaborative training of a global model among multiple devices while ensuring data privacy. In classical federated learning, the communication channel between the devices poses a potential risk of compromising private information. To reduce the risk of adversary eavesdropping in the communication channel, we propose TRADE (transmit difference weight) concept. This concept replaces the decentralized federated learning algorithm's transmitted weight parameters with differential weight parameters, enhancing the privacy data against eavesdropping. Subsequently, by integrating the TRADE concept with the primal-dual stochastic gradient descent (SGD) algorithm, we propose a decentralized TRADE primal-dual SGD algorithm. We demonstrate that our proposed algorithm's convergence properties are the same as those of the primal-dual SGD algorithm while providing enhanced privacy protection. We validate the algorithm's performance on fault diagnosis task using the Case Western Reserve University dataset, and image classification tasks using the CIFAR-10 and CIFAR-100 datasets, revealing model accuracy comparable to centralized federated learning. Additionally, the experiments confirm the algorithm's privacy protection capability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信