Graph Neural Network-Based Approach for Detecting False Data Injection Attacks on Voltage Stability

IF 3.3 Q3 ENERGY & FUELS
Shahriar Rahman Fahim;Rachad Atat;Cihat Kececi;Abdulrahman Takiddin;Muhammad Ismail;Katherine R. Davis;Erchin Serpedin
{"title":"Graph Neural Network-Based Approach for Detecting False Data Injection Attacks on Voltage Stability","authors":"Shahriar Rahman Fahim;Rachad Atat;Cihat Kececi;Abdulrahman Takiddin;Muhammad Ismail;Katherine R. Davis;Erchin Serpedin","doi":"10.1109/OAJPE.2024.3524268","DOIUrl":null,"url":null,"abstract":"The integration of information and communication technologies into modern power systems has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technologies expose power systems to cyberattacks, which could lead to voltage instability and significant damage. Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper develops an FDIA detection approach that considers data falsification attacks on voltage regulation and enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced generalization performance in all situations. Simulations were performed on the Iberian power system topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"12-23"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824826","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10824826/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of information and communication technologies into modern power systems has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technologies expose power systems to cyberattacks, which could lead to voltage instability and significant damage. Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper develops an FDIA detection approach that considers data falsification attacks on voltage regulation and enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced generalization performance in all situations. Simulations were performed on the Iberian power system topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信