Graphon Neural Networks-Based Detection of False Data Injection Attacks in Dynamic Spatio-Temporal Power Systems

IF 3.3 Q3 ENERGY & FUELS
Rachad Atat;Abdulrahman Takiddin;Muhammad Ismail;Erchin Serpedin
{"title":"Graphon Neural Networks-Based Detection of False Data Injection Attacks in Dynamic Spatio-Temporal Power Systems","authors":"Rachad Atat;Abdulrahman Takiddin;Muhammad Ismail;Erchin Serpedin","doi":"10.1109/OAJPE.2025.3530352","DOIUrl":null,"url":null,"abstract":"Cyberattacks on power systems have doubled due to digitization, impacting healthcare, social, and economic sectors. False data injection attacks (FDIAs) are a significant threat, allowing attackers to manipulate power measurements and transfer malicious data to control centers. In this paper, we propose the use of graphon neural networks (WNNs) for detecting various FDIAs. Unlike existing graph neural network (GNN)-based detectors, WNNs are efficient as they make use of the non-parametric graph processing method known as graphon, which is a limiting object of a sequence of dense graphs, whose family members share similar characteristics. This allows to leverage the learning by transference on the graphs to address the computational complexity and environmental concerns of training on large-scale systems, and the dynamicity resulting from the spatio-temporal evolution of power systems. Through experimental simulations, we show that WNN significantly improves FDIAs detection, training time, and real-time decision making under topological reconfigurations and growing system size with generalization and scalability benefits compared to conventional GNNs.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"12 ","pages":"24-35"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843273","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843273/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Cyberattacks on power systems have doubled due to digitization, impacting healthcare, social, and economic sectors. False data injection attacks (FDIAs) are a significant threat, allowing attackers to manipulate power measurements and transfer malicious data to control centers. In this paper, we propose the use of graphon neural networks (WNNs) for detecting various FDIAs. Unlike existing graph neural network (GNN)-based detectors, WNNs are efficient as they make use of the non-parametric graph processing method known as graphon, which is a limiting object of a sequence of dense graphs, whose family members share similar characteristics. This allows to leverage the learning by transference on the graphs to address the computational complexity and environmental concerns of training on large-scale systems, and the dynamicity resulting from the spatio-temporal evolution of power systems. Through experimental simulations, we show that WNN significantly improves FDIAs detection, training time, and real-time decision making under topological reconfigurations and growing system size with generalization and scalability benefits compared to conventional GNNs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信