{"title":"Penalty Function-Based Distributed Primal-Dual Algorithm for Nonconvex Optimization Problem","authors":"Xiasheng Shi;Changyin Sun","doi":"10.1109/JAS.2024.124935","DOIUrl":null,"url":null,"abstract":"This paper addresses the distributed nonconvex optimization problem, where both the global cost function and local inequality constraint function are nonconvex. To tackle this issue, the p-power transformation and penalty function techniques are introduced to reframe the nonconvex optimization problem. This ensures that the Hessian matrix of the augmented Lagrangian function becomes local positive definite by choosing appropriate control parameters. A multi-timescale primal-dual method is then devised based on the Karush-Kuhn-Tucker (KKT) point of the reformulated nonconvex problem to attain convergence. The Lyapunov theory guarantees the model's stability in the presence of an undirected and connected communication network. Finally, two nonconvex optimization problems are presented to demonstrate the efficacy of the previously developed method.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 2","pages":"394-402"},"PeriodicalIF":15.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10846920/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the distributed nonconvex optimization problem, where both the global cost function and local inequality constraint function are nonconvex. To tackle this issue, the p-power transformation and penalty function techniques are introduced to reframe the nonconvex optimization problem. This ensures that the Hessian matrix of the augmented Lagrangian function becomes local positive definite by choosing appropriate control parameters. A multi-timescale primal-dual method is then devised based on the Karush-Kuhn-Tucker (KKT) point of the reformulated nonconvex problem to attain convergence. The Lyapunov theory guarantees the model's stability in the presence of an undirected and connected communication network. Finally, two nonconvex optimization problems are presented to demonstrate the efficacy of the previously developed method.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.