A Multi-Condition Sequential Network Ensemble for Industrial Energy Storage Prediction Considering the Condition Switching Characteristics

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Tianyu Wang;Fan Zhou;Yangjie Wu;Jun Zhao;Wei Wang
{"title":"A Multi-Condition Sequential Network Ensemble for Industrial Energy Storage Prediction Considering the Condition Switching Characteristics","authors":"Tianyu Wang;Fan Zhou;Yangjie Wu;Jun Zhao;Wei Wang","doi":"10.1109/JAS.2024.124962","DOIUrl":null,"url":null,"abstract":"As a crucial storage and buffering apparatus for balancing the production and consumption of byproduct gases in industrial processes, accurate prediction of gas tank levels is essential for optimizing energy system scheduling. Considering that the continuous switching of the pressure and valve status (mechanism knowledge) would bring about multiple working conditions of the equipment, a multi-condition time sequential network ensembled method is proposed. In order to especially consider the time dependence of different conditions, a central-wise condition sequential network is developed, where the network branches are specially designed based on the condition switching sequences. A branch combination transfer learning strategy is developed to tackle the sample imbalance problem of different condition data. Since the condition or status data are real-time information that cannot be recognized during the prediction process, a pre-trained and ensemble learning approach is further proposed to fuse the outputs of the multi-condition networks and realize a transient-state involved prediction. The performance of the proposed method is validated on practical energy data coming from a domestic steel plant, comparing with the state-of-the-art algorithms. The results show that the proposed method can maintain a high prediction accuracy under different condition switching cases, which would provide effective guidance for the optimal scheduling of the industrial energy systems.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 2","pages":"369-380"},"PeriodicalIF":15.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10846958/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As a crucial storage and buffering apparatus for balancing the production and consumption of byproduct gases in industrial processes, accurate prediction of gas tank levels is essential for optimizing energy system scheduling. Considering that the continuous switching of the pressure and valve status (mechanism knowledge) would bring about multiple working conditions of the equipment, a multi-condition time sequential network ensembled method is proposed. In order to especially consider the time dependence of different conditions, a central-wise condition sequential network is developed, where the network branches are specially designed based on the condition switching sequences. A branch combination transfer learning strategy is developed to tackle the sample imbalance problem of different condition data. Since the condition or status data are real-time information that cannot be recognized during the prediction process, a pre-trained and ensemble learning approach is further proposed to fuse the outputs of the multi-condition networks and realize a transient-state involved prediction. The performance of the proposed method is validated on practical energy data coming from a domestic steel plant, comparing with the state-of-the-art algorithms. The results show that the proposed method can maintain a high prediction accuracy under different condition switching cases, which would provide effective guidance for the optimal scheduling of the industrial energy systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信