Lizhen Zhou;Zichuan Xu;Qiufen Xia;Zhou Xu;Wenhao Ren;Wenbo Qi;Jinjing Ma;Song Yan;Yuan Yang
{"title":"Chasing Common Knowledge: Joint Large Model Selection and Pulling in MEC With Parameter Sharing","authors":"Lizhen Zhou;Zichuan Xu;Qiufen Xia;Zhou Xu;Wenhao Ren;Wenbo Qi;Jinjing Ma;Song Yan;Yuan Yang","doi":"10.1109/TPDS.2025.3527649","DOIUrl":null,"url":null,"abstract":"Pretrained Foundation Models (PFMs) are regarded as a promising accelerator for the development of various Artificial Intelligence (AI) applications, and have recently been widely fine-tuned to satisfy users’ personalized inference demands. As many users are attracted to PFM-based AI applications, remote data centers are increasingly unable to solely bear the enormous computational demands and meet the delay requirements of inference requests. Mobile edge computing (MEC) offers a viable solution for delivering low-latency inference services by pulling fine-tuned PFMs from the remote data center to cloudlets in the proximity of users. However, a fine-tuned PFM typically comprises billions of model parameters, which are highly resource-intensive, time-consuming, and cost-prohibitive to execute at the edge. To address this, we investigate a novel joint large model selection and pulling problem in MEC networks. The novelty of our study lies in exploring parameter sharing among fine-tuned PFMs based on their common knowledge. Specifically, we first formulate a Non-Linear Integer Programming (NLIP) for the problem to minimize the total delay of implementing all inference requests. We then transform the NLIP into an equivalent Integer Linear Program (ILP) that is much simpler to solve. We further propose a randomized algorithm with a provable approximation ratio for the problem. We also consider the online version of the problem with uncertain request demand, and develop an online learning algorithm with a bounded regret. The crux of the online algorithm is the adoption of the multi-armed bandit technique with restricted context for dynamic admissions of inference requests. We finally conduct extensive experiments based on real datasets. Experimental results demonstrate that our algorithms reduce at least 38% in total delays and average costs, while achieving a 5% improvement in average accuracies.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 3","pages":"437-454"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10834568/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Pretrained Foundation Models (PFMs) are regarded as a promising accelerator for the development of various Artificial Intelligence (AI) applications, and have recently been widely fine-tuned to satisfy users’ personalized inference demands. As many users are attracted to PFM-based AI applications, remote data centers are increasingly unable to solely bear the enormous computational demands and meet the delay requirements of inference requests. Mobile edge computing (MEC) offers a viable solution for delivering low-latency inference services by pulling fine-tuned PFMs from the remote data center to cloudlets in the proximity of users. However, a fine-tuned PFM typically comprises billions of model parameters, which are highly resource-intensive, time-consuming, and cost-prohibitive to execute at the edge. To address this, we investigate a novel joint large model selection and pulling problem in MEC networks. The novelty of our study lies in exploring parameter sharing among fine-tuned PFMs based on their common knowledge. Specifically, we first formulate a Non-Linear Integer Programming (NLIP) for the problem to minimize the total delay of implementing all inference requests. We then transform the NLIP into an equivalent Integer Linear Program (ILP) that is much simpler to solve. We further propose a randomized algorithm with a provable approximation ratio for the problem. We also consider the online version of the problem with uncertain request demand, and develop an online learning algorithm with a bounded regret. The crux of the online algorithm is the adoption of the multi-armed bandit technique with restricted context for dynamic admissions of inference requests. We finally conduct extensive experiments based on real datasets. Experimental results demonstrate that our algorithms reduce at least 38% in total delays and average costs, while achieving a 5% improvement in average accuracies.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.