Impulsive Consensus of MASs With Input Saturation and DoS Attacks

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xuyang Wang;Dengxiu Yu;Xiaodi Li
{"title":"Impulsive Consensus of MASs With Input Saturation and DoS Attacks","authors":"Xuyang Wang;Dengxiu Yu;Xiaodi Li","doi":"10.1109/JAS.2024.124944","DOIUrl":null,"url":null,"abstract":"This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems (MASs) with input saturation. According to the coupling of input saturation and denial of service (DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks, this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability. Through linear matrix inequalities (LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"12 2","pages":"414-424"},"PeriodicalIF":15.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10846925/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems (MASs) with input saturation. According to the coupling of input saturation and denial of service (DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks, this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability. Through linear matrix inequalities (LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness.
具有输入饱和的脉冲一致质量和DoS攻击
研究了具有输入饱和的lipschitz型非线性多智能体系统的安全脉冲一致性。由于输入饱和和拒绝服务(DoS)攻击的耦合,使得海量系统的脉冲控制变得非常具有挑战性。考虑到一般的DoS攻击,本文给出了在输入饱和情况下质量几乎肯定一致的充分条件,其中误差系统可以达到几乎肯定的局部指数稳定性。通过线性矩阵不等式(lmi),刻画了轨迹边界与DoS攻击之间的关系,并估计了轨迹边界。在此基础上,提出了一种吸引域优化方法,使吸引域尺寸最大化。并提出了一个非保守的实用边界来表征DoS攻击对MASs的影响。最后,以一个具有典型蔡氏电路动态模型的多智能体系统为例,说明了定理的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信