Personalized Off-Road Path Planning Based on Internal and External Characteristics for Obstacle Avoidance

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL
Shida Nie;Yujia Xie;Congshuai Guo;Hui Liu;Fawang Zhang;Rui Liu
{"title":"Personalized Off-Road Path Planning Based on Internal and External Characteristics for Obstacle Avoidance","authors":"Shida Nie;Yujia Xie;Congshuai Guo;Hui Liu;Fawang Zhang;Rui Liu","doi":"10.1109/TITS.2024.3508841","DOIUrl":null,"url":null,"abstract":"Off-road environments with varied terrain and obstacle types present substantial challenges to the safe maneuvering of unmanned ground vehicles (UGVs). This study addresses the need for personalized path planning by introducing a multi-source off-road potential field (MOPF) method that quantifies risk and impediments in off-road settings based on internal and external characteristics. Specifically, Vehicle capability boundaries are defined by longitudinal dynamics analysis of the ego-vehicle to prevent instability due to insufficient driving force and limited adhesion conditions. A novel Non-Uniform Safety Margin Expression (NSME) is proposed to adjust the MOPF, allowing it to consider the vehicle’s state to enhance travel efficiency and minimize detours. The MOPF can be adapted according to the characteristics of the ego vehicle, drivers, and cargo. To incorporate driving styles, the Driving Style Probabilistic Roadmap (DSPRM) algorithm is developed, leading to smoother and more personalized paths. Comparative tests demonstrate that our method enables personalized path planning, achieving an average reduction of 10.29% in path length and 30.83% in path slope compared to traditional planning methods, while maintaining a safe distance from obstacles.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"26 2","pages":"2397-2409"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10790860/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Off-road environments with varied terrain and obstacle types present substantial challenges to the safe maneuvering of unmanned ground vehicles (UGVs). This study addresses the need for personalized path planning by introducing a multi-source off-road potential field (MOPF) method that quantifies risk and impediments in off-road settings based on internal and external characteristics. Specifically, Vehicle capability boundaries are defined by longitudinal dynamics analysis of the ego-vehicle to prevent instability due to insufficient driving force and limited adhesion conditions. A novel Non-Uniform Safety Margin Expression (NSME) is proposed to adjust the MOPF, allowing it to consider the vehicle’s state to enhance travel efficiency and minimize detours. The MOPF can be adapted according to the characteristics of the ego vehicle, drivers, and cargo. To incorporate driving styles, the Driving Style Probabilistic Roadmap (DSPRM) algorithm is developed, leading to smoother and more personalized paths. Comparative tests demonstrate that our method enables personalized path planning, achieving an average reduction of 10.29% in path length and 30.83% in path slope compared to traditional planning methods, while maintaining a safe distance from obstacles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信