Improving Energy Harvesting System from Ambient RF Sources in Social Systems with Overcrowding

Q2 Decision Sciences
Ramy Agieb;Ayman Amer;Ibrahim Mansour;Ahmed Solyman;Khalid Yahya;Ahmed Samir
{"title":"Improving Energy Harvesting System from Ambient RF Sources in Social Systems with Overcrowding","authors":"Ramy Agieb;Ayman Amer;Ibrahim Mansour;Ahmed Solyman;Khalid Yahya;Ahmed Samir","doi":"10.26599/IJCS.2023.9100022","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to enhance energy harvesting systems from ambient Radio Frequency (RF) sources in overcrowded environments. In environments like shopping malls, coffee shops, and airports, where wireless devices are prevalent, the electromagnetic energy emitted by these devices can be harvested and converted into electrical energy to power small devices, specifically those associated with the Social Internet of Things (SIoT). However, due to the high density of devices in such environments, the RF signals can be weak, resulting in low energy harvesting efficiency. This study focuses on developing technologies for wireless power transfer through a radio frequency ambient energy harvesting scheme, specifically designing to improve energy harvesting systems in crowded social environments. Recognizing the growing importance of energy harvesting for low-power devices in intelligent environments, our proposed method utilizes the ambient environment to capture energy in the downlink radio frequency range of the GSM-900 band. The system architecture comprises four main stages: a supercapacitor, a Villard voltage doubler circuit with seven stages, a lumped element matching network, and a microstrip patch antenna. The voltage doubler circuit is designed and simulated using the Agilent Advanced Design System (ADS) 2014 environment, and simulations and tests are conducted across different input power levels. Throughout the study, several key factors are identified as crucial to the system's efficiency, including the frequency band, input power level, voltage doubler circuit design, impedance matching, diode selection, number of rectification stages, and load resistance. The proposed method demonstrates significant potential in enhancing the energy harvesting efficiency from ambient RF sources in crowded social environments. By providing a sustainable power source for SIoT devices in such settings, our approach contributes to the advancement of energy harvesting capabilities and supports the practical implementation of energy-efficient technologies in intelligent and socially interconnected environments.","PeriodicalId":32381,"journal":{"name":"International Journal of Crowd Science","volume":"9 1","pages":"13-28"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10858031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crowd Science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10858031/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to enhance energy harvesting systems from ambient Radio Frequency (RF) sources in overcrowded environments. In environments like shopping malls, coffee shops, and airports, where wireless devices are prevalent, the electromagnetic energy emitted by these devices can be harvested and converted into electrical energy to power small devices, specifically those associated with the Social Internet of Things (SIoT). However, due to the high density of devices in such environments, the RF signals can be weak, resulting in low energy harvesting efficiency. This study focuses on developing technologies for wireless power transfer through a radio frequency ambient energy harvesting scheme, specifically designing to improve energy harvesting systems in crowded social environments. Recognizing the growing importance of energy harvesting for low-power devices in intelligent environments, our proposed method utilizes the ambient environment to capture energy in the downlink radio frequency range of the GSM-900 band. The system architecture comprises four main stages: a supercapacitor, a Villard voltage doubler circuit with seven stages, a lumped element matching network, and a microstrip patch antenna. The voltage doubler circuit is designed and simulated using the Agilent Advanced Design System (ADS) 2014 environment, and simulations and tests are conducted across different input power levels. Throughout the study, several key factors are identified as crucial to the system's efficiency, including the frequency band, input power level, voltage doubler circuit design, impedance matching, diode selection, number of rectification stages, and load resistance. The proposed method demonstrates significant potential in enhancing the energy harvesting efficiency from ambient RF sources in crowded social environments. By providing a sustainable power source for SIoT devices in such settings, our approach contributes to the advancement of energy harvesting capabilities and supports the practical implementation of energy-efficient technologies in intelligent and socially interconnected environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Crowd Science
International Journal of Crowd Science Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.70
自引率
0.00%
发文量
20
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信