Remote Sensing of Sun-Induced Fluorescence in a Deep Lake: Disentangling Quenching Mechanisms Improves Relationship With Chlorophyll-a Concentration Estimates

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Remika S. Gupana;Daniel Odermatt;Abolfazl Irani Rahaghi;Camille Minaudo;Mortimer Werther;Claudia Giardino;Alexander Damm
{"title":"Remote Sensing of Sun-Induced Fluorescence in a Deep Lake: Disentangling Quenching Mechanisms Improves Relationship With Chlorophyll-a Concentration Estimates","authors":"Remika S. Gupana;Daniel Odermatt;Abolfazl Irani Rahaghi;Camille Minaudo;Mortimer Werther;Claudia Giardino;Alexander Damm","doi":"10.1109/JSTARS.2025.3528911","DOIUrl":null,"url":null,"abstract":"Sun-induced fluorescence (SIF) from phytoplankton has historically been used as a proxy for chlorophyll-a (chl-a) concentration estimates in water bodies using optical earth observation data. However, the relationship is often affected by spectral features caused by elastic scattering, and by the shifting incidence of different fluorescence quenching mechanisms. This study found that disentangling photochemical quenching (PQ) and nonphotochemical quenching (NPQ) cases improves SIF-based chl-a estimates. Furthermore, we defined strategies that can distinguish the two quenching mechanisms. We assembled a unique dataset collected between 2018 and 2022 by an autonomous profiler in Lake Geneva (Western Europe). We used NPQ-influenced chl-a estimates from the fluorometer and NPQ-corrected chl-a estimates to distinguish between PQ and NPQ cases. The correlation between SIF yield and chl-a is weak when considering the entire dataset (<italic>R</i><sup>2</sup> = 0.37 and median absolute percentage difference (MAPD) = 74%). It increases strongly when comparing PQ (<italic>R</i><sup>2</sup> = 0.72 and MAPD = 49%) and NPQ cases (<italic>R</i><sup>2</sup> = 0.48 and MAPD = 68%) separately. Analyzing a subset of in situ measurements acquired around Sentinel-3 overpasses (±3 h) improved the performance metrics for both PQ (<italic>R</i><sup>2</sup> = 0.82 and MAPD = 35%) and NPQ cases (<italic>R</i><sup>2</sup> = 0.43 and MAPD = 61%). However, when applying the same approach to Sentinel-3 Ocean and Land Color Instrument data, we found that the errors in remote sensing reflectance products disable such an adaptation. We conclude that enhanced atmospheric correction in the red-to-near-infrared region for oligo-mesotrophic lakes is needed to demonstrate the upscaling of our in-situ-based results. This will enhance satellite-based SIF yield retrievals and, subsequently, obtain SIF-related phytoplankton physiology products.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4410-4426"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839553","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839553/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sun-induced fluorescence (SIF) from phytoplankton has historically been used as a proxy for chlorophyll-a (chl-a) concentration estimates in water bodies using optical earth observation data. However, the relationship is often affected by spectral features caused by elastic scattering, and by the shifting incidence of different fluorescence quenching mechanisms. This study found that disentangling photochemical quenching (PQ) and nonphotochemical quenching (NPQ) cases improves SIF-based chl-a estimates. Furthermore, we defined strategies that can distinguish the two quenching mechanisms. We assembled a unique dataset collected between 2018 and 2022 by an autonomous profiler in Lake Geneva (Western Europe). We used NPQ-influenced chl-a estimates from the fluorometer and NPQ-corrected chl-a estimates to distinguish between PQ and NPQ cases. The correlation between SIF yield and chl-a is weak when considering the entire dataset (R2 = 0.37 and median absolute percentage difference (MAPD) = 74%). It increases strongly when comparing PQ (R2 = 0.72 and MAPD = 49%) and NPQ cases (R2 = 0.48 and MAPD = 68%) separately. Analyzing a subset of in situ measurements acquired around Sentinel-3 overpasses (±3 h) improved the performance metrics for both PQ (R2 = 0.82 and MAPD = 35%) and NPQ cases (R2 = 0.43 and MAPD = 61%). However, when applying the same approach to Sentinel-3 Ocean and Land Color Instrument data, we found that the errors in remote sensing reflectance products disable such an adaptation. We conclude that enhanced atmospheric correction in the red-to-near-infrared region for oligo-mesotrophic lakes is needed to demonstrate the upscaling of our in-situ-based results. This will enhance satellite-based SIF yield retrievals and, subsequently, obtain SIF-related phytoplankton physiology products.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信