Fengshun Zhu;Jinbo Li;Yang Li;Jianqiao Xu;Jinyun Guo;Jiangcun Zhou;Heping Sun
{"title":"Estimating Seafloor Topography of the South China Sea Using SWOT Wide-Swath Altimetry Data","authors":"Fengshun Zhu;Jinbo Li;Yang Li;Jianqiao Xu;Jinyun Guo;Jiangcun Zhou;Heping Sun","doi":"10.1109/JSTARS.2025.3526683","DOIUrl":null,"url":null,"abstract":"The surface water and ocean topography (SWOT) wide-swath altimetry satellite was launched in December 2022. The performance of novel wide-swath altimetry in seafloor topography modeling needs to be evaluated. This study utilized 15 cycles of SWOT Level-3 product to construct seafloor topography model of the South China Sea by linear regression analysis. The root mean square error of the difference between the model and shipborne bathymetry at checkpoints is about 120 m, which is 20 m better than topo_27.1 and DTU18BAT, and 40 m better than ETOPO1. First, the effects of the shipborne bathymetry at control points and priori bathymetry model in different topography-gravity scaling factor estimation strategies [A: using robust least squares (RBLSQ) to estimate regional scaling factor; B: using ratio method to calculate scaling factors at control points; C: using the moving window method and RBLSQ to obtain scaling factor grids.] on SWOT seafloor topography modeling are explored. We find that the control point number barely affects strategy A/C but significantly affects strategy B, while the priori bathymetry model mainly affects strategy C. Then, the three strategies are applied to the traditional radar altimetry gravity anomaly, and the results are compared with the SWOT-derived seafloor topography. The results show that incorporating SWOT data can improve the accuracy of seafloor topography estimation by about 7 m, and improve the power spectral density in the wavelength range about 10–20 km, which can help to reveal more detailed topography information.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3569-3580"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10829941","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10829941/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The surface water and ocean topography (SWOT) wide-swath altimetry satellite was launched in December 2022. The performance of novel wide-swath altimetry in seafloor topography modeling needs to be evaluated. This study utilized 15 cycles of SWOT Level-3 product to construct seafloor topography model of the South China Sea by linear regression analysis. The root mean square error of the difference between the model and shipborne bathymetry at checkpoints is about 120 m, which is 20 m better than topo_27.1 and DTU18BAT, and 40 m better than ETOPO1. First, the effects of the shipborne bathymetry at control points and priori bathymetry model in different topography-gravity scaling factor estimation strategies [A: using robust least squares (RBLSQ) to estimate regional scaling factor; B: using ratio method to calculate scaling factors at control points; C: using the moving window method and RBLSQ to obtain scaling factor grids.] on SWOT seafloor topography modeling are explored. We find that the control point number barely affects strategy A/C but significantly affects strategy B, while the priori bathymetry model mainly affects strategy C. Then, the three strategies are applied to the traditional radar altimetry gravity anomaly, and the results are compared with the SWOT-derived seafloor topography. The results show that incorporating SWOT data can improve the accuracy of seafloor topography estimation by about 7 m, and improve the power spectral density in the wavelength range about 10–20 km, which can help to reveal more detailed topography information.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.