Context-Aware Dual-Task Deep Network for Concurrent Bone Segmentation and Clinical Assessment to Enhance Shoulder Arthroplasty Preoperative planning

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Luca Marsilio;Andrea Moglia;Alfonso Manzotti;Pietro Cerveri
{"title":"Context-Aware Dual-Task Deep Network for Concurrent Bone Segmentation and Clinical Assessment to Enhance Shoulder Arthroplasty Preoperative planning","authors":"Luca Marsilio;Andrea Moglia;Alfonso Manzotti;Pietro Cerveri","doi":"10.1109/OJEMB.2025.3527877","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> Effective preoperative planning for shoulder joint replacement requires accurate glenohumeral joint (GH) digital surfaces and reliable clinical staging. <italic>Methods:</i> xCEL-UNet was designed as a dual-task deep network for humerus and scapula bone reconstruction in CT scans, and assessment of three GH joint clinical conditions, namely osteophyte size (OS), joint space reduction (JS), and humeroscapular alignment (HSA). <italic>Results:</i> Trained on a dataset of 571 patients, the model optimized segmentation and classification through transfer learning. It achieved median root mean squared errors of 0.31 and 0.24 mm, and Hausdorff distances of 2.35 and 3.28 mm for the humerus and scapula, respectively. Classification accuracy was 91 for OS, 93 for JS, and 85% for HSA. GradCAM-based activation maps validated the network's interpretability. <italic>Conclusions:</i> this framework delivers accurate 3D bone surface reconstructions and dependable clinical assessments of the GH joint, offering robust support for therapeutic decision-making in shoulder arthroplasty.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"269-278"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: Effective preoperative planning for shoulder joint replacement requires accurate glenohumeral joint (GH) digital surfaces and reliable clinical staging. Methods: xCEL-UNet was designed as a dual-task deep network for humerus and scapula bone reconstruction in CT scans, and assessment of three GH joint clinical conditions, namely osteophyte size (OS), joint space reduction (JS), and humeroscapular alignment (HSA). Results: Trained on a dataset of 571 patients, the model optimized segmentation and classification through transfer learning. It achieved median root mean squared errors of 0.31 and 0.24 mm, and Hausdorff distances of 2.35 and 3.28 mm for the humerus and scapula, respectively. Classification accuracy was 91 for OS, 93 for JS, and 85% for HSA. GradCAM-based activation maps validated the network's interpretability. Conclusions: this framework delivers accurate 3D bone surface reconstructions and dependable clinical assessments of the GH joint, offering robust support for therapeutic decision-making in shoulder arthroplasty.
上下文感知双任务深度网络并行骨分割和临床评估,以加强肩关节置换术术前计划
目的:有效的肩关节置换术术前规划需要准确的肩关节数字面和可靠的临床分期。方法:设计xCEL-UNet作为双任务深度网络,用于肱骨和肩胛骨CT扫描重建,并评估骨肿大小(OS)、关节间隙缩小(JS)和肱骨-肩胛骨对齐(HSA)三种GH关节临床状况。结果:该模型在571例患者数据集上训练,通过迁移学习优化了分割和分类。肱骨和肩胛骨的均方根中位数误差分别为0.31和0.24 mm, Hausdorff距离分别为2.35和3.28 mm。OS的分类准确率为91,JS为93,HSA为85%。基于gradcam的激活图验证了网络的可解释性。结论:该框架提供了准确的3D骨表面重建和GH关节的可靠临床评估,为肩关节置换术的治疗决策提供了强有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信