A High-Precision Real-Time PWV Grid Model for the China Region and Its Preliminary Performance in WRF Assimilation

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pengfei Xia;Biyan Chen;Ning Huang;Xin Xie;Qinglan Zhang
{"title":"A High-Precision Real-Time PWV Grid Model for the China Region and Its Preliminary Performance in WRF Assimilation","authors":"Pengfei Xia;Biyan Chen;Ning Huang;Xin Xie;Qinglan Zhang","doi":"10.1109/JSTARS.2025.3525770","DOIUrl":null,"url":null,"abstract":"Precipitable water vapor (PWV) is a key parameter in studying water vapor variations during severe weather phenomena. The high-quality PWV maps are also of significant value for monitoring and early warning of geological disasters, such as landslides and debris flows. This study presents a high-precision real-time PWV grid model for the China region, utilizing global navigation satellite system (GNSS) observations and surface meteorological data. The model addresses the limitations of existing PWV retrieval methods by incorporating an improved altitude correction model for pressure and temperature using ERA5 reanalysis data. The model achieves a spatial resolution of 0.5° × 0.5° and incorporates real-time updates for accurate monitoring of atmospheric moisture variations. The model's performance was evaluated using surface meteorological observations and compared with the HGPT2 model. Results showed that the new model outperforms HGPT2 in terms of accuracy, particularly in low-latitude regions. In addition, the model was successfully assimilated into the weather research and forecasting (WRF) model, significantly improving the accuracy of the initial atmospheric field for numerical weather prediction. This study demonstrates the potential of GNSS and surface meteorological data in constructing high-resolution, real-time PWV models. The developed model provides valuable insights into atmospheric moisture variations and enhances the accuracy of weather forecasting and climate research in the China region.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3433-3447"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10824939","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10824939/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Precipitable water vapor (PWV) is a key parameter in studying water vapor variations during severe weather phenomena. The high-quality PWV maps are also of significant value for monitoring and early warning of geological disasters, such as landslides and debris flows. This study presents a high-precision real-time PWV grid model for the China region, utilizing global navigation satellite system (GNSS) observations and surface meteorological data. The model addresses the limitations of existing PWV retrieval methods by incorporating an improved altitude correction model for pressure and temperature using ERA5 reanalysis data. The model achieves a spatial resolution of 0.5° × 0.5° and incorporates real-time updates for accurate monitoring of atmospheric moisture variations. The model's performance was evaluated using surface meteorological observations and compared with the HGPT2 model. Results showed that the new model outperforms HGPT2 in terms of accuracy, particularly in low-latitude regions. In addition, the model was successfully assimilated into the weather research and forecasting (WRF) model, significantly improving the accuracy of the initial atmospheric field for numerical weather prediction. This study demonstrates the potential of GNSS and surface meteorological data in constructing high-resolution, real-time PWV models. The developed model provides valuable insights into atmospheric moisture variations and enhances the accuracy of weather forecasting and climate research in the China region.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信