{"title":"Land Use Mapping of the Guangdong–Hong Kong Macao Greater Bay Area Based on a New Approach at 30 m Resolution for the Years 1976 to 2020","authors":"Yu Gu;Yangbo Chen;Jun Liu","doi":"10.1109/JSTARS.2024.3523707","DOIUrl":null,"url":null,"abstract":"Multicategory land use data of high spatiotemporal resolution and large scale are crucial for studying regional ecological and environmental changes and urbanization impacts as well as for sustainable development planning. Currently available public data products include those of high spatial resolution global land use temporally limited to a single or short period, or global annual land cover products in which only a single land use type is depicted, such that regional characteristics are overlooked. In either case, fine-scale annual variation over longer time spans may not be reflected. In this study, the Google Earth Engine platform, Landsat satellite imagery, and a substantial number of manually interpreted samples were used to develop a dataset of annual land use changes in the Guangdong–Hong Kong Macao Greater Bay Area (GBA) at a 30 m resolution for the years 1976 to 2020. This dataset, termed Annual Land Use/Cover of the Greater Bay Area (LUC-GBA), was used to analyze the annual land use variation in 11 cities within the GBA. The high level of accuracy achieved with the LUC-GBA dataset was evidenced by an overall accuracy (OA) of 93.9% in 2020. The OA of interannual classification models ranged from 83.9% to 93.9%, and the kappa coefficients from 0.805 to 0.923. These results indicate that the LUC-GBA dataset effectively reflects the surface cover distribution and interannual dynamic evolution of the land area in the GBA at a 30 m spatial resolution, thus providing reliable data support for land surface process research and related applications.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"3943-3958"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10827814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10827814/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multicategory land use data of high spatiotemporal resolution and large scale are crucial for studying regional ecological and environmental changes and urbanization impacts as well as for sustainable development planning. Currently available public data products include those of high spatial resolution global land use temporally limited to a single or short period, or global annual land cover products in which only a single land use type is depicted, such that regional characteristics are overlooked. In either case, fine-scale annual variation over longer time spans may not be reflected. In this study, the Google Earth Engine platform, Landsat satellite imagery, and a substantial number of manually interpreted samples were used to develop a dataset of annual land use changes in the Guangdong–Hong Kong Macao Greater Bay Area (GBA) at a 30 m resolution for the years 1976 to 2020. This dataset, termed Annual Land Use/Cover of the Greater Bay Area (LUC-GBA), was used to analyze the annual land use variation in 11 cities within the GBA. The high level of accuracy achieved with the LUC-GBA dataset was evidenced by an overall accuracy (OA) of 93.9% in 2020. The OA of interannual classification models ranged from 83.9% to 93.9%, and the kappa coefficients from 0.805 to 0.923. These results indicate that the LUC-GBA dataset effectively reflects the surface cover distribution and interannual dynamic evolution of the land area in the GBA at a 30 m spatial resolution, thus providing reliable data support for land surface process research and related applications.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.