Yuanjin Pan;Xiaohong Zhang;Jiashuang Jiao;Hao Ding;C. K. Shum
{"title":"Geodetic Evidence of the Interannual Fluctuations and Long-Term Trends Over the Antarctic Ice Sheet Mass Change","authors":"Yuanjin Pan;Xiaohong Zhang;Jiashuang Jiao;Hao Ding;C. K. Shum","doi":"10.1109/JSTARS.2025.3528516","DOIUrl":null,"url":null,"abstract":"The spatiotemporal characteristics of the Antarctic ice sheet (AIS), as constrained by geodetic observations, provide us with a deeper understanding of the current evolution of ice mass balance. However, it still needs further in-depth research on interannual fluctuations and long-term trends of ice mass changes throughout the AIS. In this study, these two aspects were quantitatively analyzed through global positioning system (GPS) and gravity recovery and climate experiment/follow on (GRACE/GFO) over the past two decades. The nonlinear variation of GPS-inferred vertical land motion (VLM) and the influence of surface elastic load are of particular concern. The principal component analysis method is utilized to extract common mode signals from GPS time series, while correcting for various surface loads. The first principal components (PCs) accounted for 57.67%, 35.87%, 36.28%, and 36.03% of the total variances in the vertical components for GPS raw, atmospheric + nontidal oceanic (AO)-removed, AO + hydrographic model (AOH)-removed, and AO + GRACE/GFO-based load (AOG)-removed, respectively. Furthermore, the GPS vertical velocity, excluding the common mode component + AOG, yielded a median value of 0.13 mm/yr, which indicates that the retreat of ice mass has made a significant contribution to the GPS-observed VLM. In addition, the glacial isostatic adjustment (GIA) effect is found to play a key role in the large-scale VLM uplifting of the West AIS. After evaluating five different GIA models with GPS vertical velocity, we suggest that the ICE-6G_D model can more effectively correct GIA signals in GPS observations over Antarctica.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"4525-4535"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839024/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The spatiotemporal characteristics of the Antarctic ice sheet (AIS), as constrained by geodetic observations, provide us with a deeper understanding of the current evolution of ice mass balance. However, it still needs further in-depth research on interannual fluctuations and long-term trends of ice mass changes throughout the AIS. In this study, these two aspects were quantitatively analyzed through global positioning system (GPS) and gravity recovery and climate experiment/follow on (GRACE/GFO) over the past two decades. The nonlinear variation of GPS-inferred vertical land motion (VLM) and the influence of surface elastic load are of particular concern. The principal component analysis method is utilized to extract common mode signals from GPS time series, while correcting for various surface loads. The first principal components (PCs) accounted for 57.67%, 35.87%, 36.28%, and 36.03% of the total variances in the vertical components for GPS raw, atmospheric + nontidal oceanic (AO)-removed, AO + hydrographic model (AOH)-removed, and AO + GRACE/GFO-based load (AOG)-removed, respectively. Furthermore, the GPS vertical velocity, excluding the common mode component + AOG, yielded a median value of 0.13 mm/yr, which indicates that the retreat of ice mass has made a significant contribution to the GPS-observed VLM. In addition, the glacial isostatic adjustment (GIA) effect is found to play a key role in the large-scale VLM uplifting of the West AIS. After evaluating five different GIA models with GPS vertical velocity, we suggest that the ICE-6G_D model can more effectively correct GIA signals in GPS observations over Antarctica.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.