Risk-Aware Reinforcement Learning Framework for User-Centric O-RAN

Shahrukh Khan Kasi;Fahd Ahmed Khan;Sabit Ekin;Ali Imran
{"title":"Risk-Aware Reinforcement Learning Framework for User-Centric O-RAN","authors":"Shahrukh Khan Kasi;Fahd Ahmed Khan;Sabit Ekin;Ali Imran","doi":"10.1109/TMLCN.2025.3534139","DOIUrl":null,"url":null,"abstract":"The evolution of Open Radio Access Networks (O-RAN) presents an opportunity to enhance network performance by enabling dynamic orchestration of configuration and optimization parameters (COPs) through online learning methods. However, leveraging this potential requires overcoming the limitations of traditional cell-centric RAN architectures, which lack the necessary flexibility. On the other hand, despite their recent popularity, the practical deployment of online learning frameworks, such as Deep Reinforcement Learning (DRL)-based COP optimization solutions, remains limited due to their risk of deteriorating network performance during the exploration phase. In this article, we propose and analyze a novel risk-aware DRL framework for user-centric RAN (UC-RAN), which offers both the architectural flexibility and COP optimization to exploit this flexibility. We investigate and identify UC-RAN COPs that can be optimized via a soft actor-critic algorithm implementable as an O-RAN application (rApp) to jointly maximize latency satisfaction, reliability satisfaction, area spectral efficiency, and energy efficiency. We use the offline learning on UC-RAN to reliably accelerate DRL training, thus minimizing the risk of DRL deteriorating cellular network performance. Results show that our proposed solution approaches near-optimal performance in just a few hundred iterations with a decrease in risk score by a factor of ten.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"195-214"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10852269","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10852269/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of Open Radio Access Networks (O-RAN) presents an opportunity to enhance network performance by enabling dynamic orchestration of configuration and optimization parameters (COPs) through online learning methods. However, leveraging this potential requires overcoming the limitations of traditional cell-centric RAN architectures, which lack the necessary flexibility. On the other hand, despite their recent popularity, the practical deployment of online learning frameworks, such as Deep Reinforcement Learning (DRL)-based COP optimization solutions, remains limited due to their risk of deteriorating network performance during the exploration phase. In this article, we propose and analyze a novel risk-aware DRL framework for user-centric RAN (UC-RAN), which offers both the architectural flexibility and COP optimization to exploit this flexibility. We investigate and identify UC-RAN COPs that can be optimized via a soft actor-critic algorithm implementable as an O-RAN application (rApp) to jointly maximize latency satisfaction, reliability satisfaction, area spectral efficiency, and energy efficiency. We use the offline learning on UC-RAN to reliably accelerate DRL training, thus minimizing the risk of DRL deteriorating cellular network performance. Results show that our proposed solution approaches near-optimal performance in just a few hundred iterations with a decrease in risk score by a factor of ten.
以用户为中心的O-RAN风险感知强化学习框架
开放无线接入网络(O-RAN)的发展为通过在线学习方法实现配置和优化参数(cop)的动态编排提供了提高网络性能的机会。然而,利用这种潜力需要克服传统的以蜂窝为中心的RAN架构的局限性,这些架构缺乏必要的灵活性。另一方面,尽管在线学习框架最近很流行,但基于深度强化学习(DRL)的COP优化解决方案等在线学习框架的实际部署仍然有限,因为它们在探索阶段存在网络性能恶化的风险。在本文中,我们为以用户为中心的RAN (UC-RAN)提出并分析了一种新颖的风险感知DRL框架,该框架提供了架构灵活性和COP优化以利用这种灵活性。我们研究并确定了UC-RAN cop,这些cop可以通过可作为O-RAN应用(rApp)实现的软行为者批评算法进行优化,以共同最大化延迟满意度、可靠性满意度、区域频谱效率和能源效率。我们使用UC-RAN的离线学习来可靠地加速DRL训练,从而最大限度地降低DRL恶化蜂窝网络性能的风险。结果表明,我们提出的解决方案在仅仅几百次迭代中接近最优性能,风险评分降低了十倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信