{"title":"$ \\mathsf{GPABE} $GPABE: GPU-Based Parallelization Framework for Attribute-Based Encryption Schemes","authors":"Wenhan Xu;Hui Ma;Rui Zhang;Jianhao Li","doi":"10.1109/TPDS.2025.3529776","DOIUrl":null,"url":null,"abstract":"Attribute-based encryption (ABE) has emerged as a new paradigm for access control in cloud computing. However, despite the many promising features of ABE, its deployment in real-world systems is still limited, partially due to the expensive cost of its underlying mathematical operations, which often grow linearly with the size and complexity of the system's security policies. This becomes particularly challenging in data-intensive applications, where multiple users may simultaneously access and manipulate large volumes of data, resulting in high levels of concurrency and demand for computing resources, which are too heavy even for high-end servers. Further exacerbating the issues are the functionality and security requirements of a cloud, as they introduce additional computations to both the client and the server. Therefore, in this work, we introduce <inline-formula><tex-math>$ \\mathsf{GPABE} $</tex-math></inline-formula>, the first GPU-based parallelization framework for ABE to facilitate its batch processing in cloud computing. By analyzing ABE's major computational workload, we identify multiple arithmetic modules that are common in the design of pairing-based ABEs. Based on the analysis, we further propose to decompose the ABE algorithm into computation graph, which can be efficiently implemented on the GPU platform. Our graph representation bridges the gap between ABE's high-level design and their low-level implementation on GPUs, and is applicable to a variety of popular schemes in the realm of ABE. We then implement <inline-formula><tex-math>$ \\mathsf{GPABE} $</tex-math></inline-formula> as a heterogeneous computing server, with several optimization techniques to improve its throughput. Finally, we evaluate the GPU implementation of several ABE schemes using <inline-formula><tex-math>$ \\mathsf{GPABE} $</tex-math></inline-formula>. The results show a speedup of least 51.0× and at most 253.6× for the throughput of ABE algorithms, compared to their state-of-the-art CPU implementations, which preliminarily demonstrated the effectiveness of <inline-formula><tex-math>$ \\mathsf{GPABE} $</tex-math></inline-formula>.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 3","pages":"520-536"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10839624/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Attribute-based encryption (ABE) has emerged as a new paradigm for access control in cloud computing. However, despite the many promising features of ABE, its deployment in real-world systems is still limited, partially due to the expensive cost of its underlying mathematical operations, which often grow linearly with the size and complexity of the system's security policies. This becomes particularly challenging in data-intensive applications, where multiple users may simultaneously access and manipulate large volumes of data, resulting in high levels of concurrency and demand for computing resources, which are too heavy even for high-end servers. Further exacerbating the issues are the functionality and security requirements of a cloud, as they introduce additional computations to both the client and the server. Therefore, in this work, we introduce $ \mathsf{GPABE} $, the first GPU-based parallelization framework for ABE to facilitate its batch processing in cloud computing. By analyzing ABE's major computational workload, we identify multiple arithmetic modules that are common in the design of pairing-based ABEs. Based on the analysis, we further propose to decompose the ABE algorithm into computation graph, which can be efficiently implemented on the GPU platform. Our graph representation bridges the gap between ABE's high-level design and their low-level implementation on GPUs, and is applicable to a variety of popular schemes in the realm of ABE. We then implement $ \mathsf{GPABE} $ as a heterogeneous computing server, with several optimization techniques to improve its throughput. Finally, we evaluate the GPU implementation of several ABE schemes using $ \mathsf{GPABE} $. The results show a speedup of least 51.0× and at most 253.6× for the throughput of ABE algorithms, compared to their state-of-the-art CPU implementations, which preliminarily demonstrated the effectiveness of $ \mathsf{GPABE} $.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.