{"title":"High-Throughput Decomposition-Inspired Deep Unfolding Network for Image Compressed Sensing","authors":"Tiancheng Li;Qiurong Yan;Yi Li;Jinwei Yan","doi":"10.1109/TCI.2025.3527880","DOIUrl":null,"url":null,"abstract":"Deep Unfolding Network (DUN) has achieved great success in the image Compressed Sensing (CS) field benefiting from its great interpretability and performance. However, existing DUNs suffer from limited information transmission capacity with increasingly complex structures, leading to undesirable results. Besides, current DUNs are mostly established based on one specific optimization algorithm, which hampers the development and understanding of DUN. In this paper, we propose a new unfolding formula combining the Approximate Message Passing algorithm (AMP) and Range-Nullspace Decomposition (RND), which offers new insights for DUN design. To maximize information transmission and utilization, we propose a novel High-Throughput Decomposition-Inspired Deep Unfolding Network (HTDIDUN) based on the new formula. Specifically, we design a powerful Nullspace Information Extractor (NIE) with high-throughput transmission and stacked residual channel attention blocks. By modulating the dimension of the feature space, we provide three implementations from small to large. Extensive experiments on natural and medical images manifest that our HTDIDUN family members outperform other state-of-the-art methods by a large margin. Our codes and pre-trained models are available on GitHub to facilitate further exploration.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"89-100"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835111/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep Unfolding Network (DUN) has achieved great success in the image Compressed Sensing (CS) field benefiting from its great interpretability and performance. However, existing DUNs suffer from limited information transmission capacity with increasingly complex structures, leading to undesirable results. Besides, current DUNs are mostly established based on one specific optimization algorithm, which hampers the development and understanding of DUN. In this paper, we propose a new unfolding formula combining the Approximate Message Passing algorithm (AMP) and Range-Nullspace Decomposition (RND), which offers new insights for DUN design. To maximize information transmission and utilization, we propose a novel High-Throughput Decomposition-Inspired Deep Unfolding Network (HTDIDUN) based on the new formula. Specifically, we design a powerful Nullspace Information Extractor (NIE) with high-throughput transmission and stacked residual channel attention blocks. By modulating the dimension of the feature space, we provide three implementations from small to large. Extensive experiments on natural and medical images manifest that our HTDIDUN family members outperform other state-of-the-art methods by a large margin. Our codes and pre-trained models are available on GitHub to facilitate further exploration.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.