VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yunxiang Liu;Yuqing Shi
{"title":"VRU-YOLO: A Small Object Detection Algorithm for Vulnerable Road Users in Complex Scenes","authors":"Yunxiang Liu;Yuqing Shi","doi":"10.1109/ACCESS.2025.3534321","DOIUrl":null,"url":null,"abstract":"Accurate detection of vulnerable road users (VRUs) is critical for enhancing traffic safety and advancing autonomous driving systems. However, due to their small size and unpredictable movements, existing detection methods struggle to provide stable and accurate results under real-time conditions. To overcome these challenges, this paper proposes an improved VRU detection algorithm based on YOLOv8, named VRU-YOLO. First, we redesign the neck structure and construct a Detail Enhancement Feature Pyramid Network (DEFPN) to enhance the extraction and fusion capabilities of small target features. Second, the YOLOv8 network’s Spatial Pyramid Pooling Fast (SPPF) module is replaced with a novel Feature Pyramid Convolution Fast (FPCF) module based on dilated convolution, effectively mitigating feature loss in small target processing. Additionally, a lightweight Optimized Shared Detection Head (OSDH-Head) is introduced, reducing computational complexity while improving detection efficiency. Finally, to alleviate the deficiencies of traditional loss functions in shape matching and computational efficiency, we propose the Wise-Powerful Intersection over Union (WPIoU) loss function, which further optimizes the regression of target bounding boxes. Experimental results on a custom-built multi-source VRU dataset show that the proposed model enhances precision, recall, mAP50, and mAP50:95 by 1.3%, 3.4%, 3.3%, and 1.8%, respectively, in comparison to the baseline model. Moreover, in a generalization test conducted on the remote sensing small target dataset VisDrone2019, the VRU-YOLO model achieved an mAP50 of 31%. This study demonstrates that the improved model offers more efficient performance in small object detection scenarios, making it well-suited for VRU detection in complex road environments.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"19996-20015"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854459","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854459/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate detection of vulnerable road users (VRUs) is critical for enhancing traffic safety and advancing autonomous driving systems. However, due to their small size and unpredictable movements, existing detection methods struggle to provide stable and accurate results under real-time conditions. To overcome these challenges, this paper proposes an improved VRU detection algorithm based on YOLOv8, named VRU-YOLO. First, we redesign the neck structure and construct a Detail Enhancement Feature Pyramid Network (DEFPN) to enhance the extraction and fusion capabilities of small target features. Second, the YOLOv8 network’s Spatial Pyramid Pooling Fast (SPPF) module is replaced with a novel Feature Pyramid Convolution Fast (FPCF) module based on dilated convolution, effectively mitigating feature loss in small target processing. Additionally, a lightweight Optimized Shared Detection Head (OSDH-Head) is introduced, reducing computational complexity while improving detection efficiency. Finally, to alleviate the deficiencies of traditional loss functions in shape matching and computational efficiency, we propose the Wise-Powerful Intersection over Union (WPIoU) loss function, which further optimizes the regression of target bounding boxes. Experimental results on a custom-built multi-source VRU dataset show that the proposed model enhances precision, recall, mAP50, and mAP50:95 by 1.3%, 3.4%, 3.3%, and 1.8%, respectively, in comparison to the baseline model. Moreover, in a generalization test conducted on the remote sensing small target dataset VisDrone2019, the VRU-YOLO model achieved an mAP50 of 31%. This study demonstrates that the improved model offers more efficient performance in small object detection scenarios, making it well-suited for VRU detection in complex road environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信