Adaptive Interference Restriction Among Spatial Streams Based on Difference in Singular Values for PAPR Reduction in Uplink Eigenmode Massive MIMO Transmission

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuta Abekura;Takanori Hara;Satoshi Suyama;Satoshi Nagata;Kenichi Higuchi
{"title":"Adaptive Interference Restriction Among Spatial Streams Based on Difference in Singular Values for PAPR Reduction in Uplink Eigenmode Massive MIMO Transmission","authors":"Yuta Abekura;Takanori Hara;Satoshi Suyama;Satoshi Nagata;Kenichi Higuchi","doi":"10.1109/ACCESS.2025.3534783","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two peak-to-average power ratio (PAPR) reduction methods that apply adaptive in-band interference restriction based on singular value differences between spatial channels in uplink eigenmode massive multiple-input multiple-output (MIMO) transmission. In uplink transmission utilizing high-frequency bands, reducing PAPR is crucial to suppress non-linear distortion and ensure sufficient transmission distance, given the stringent amplification requirements of power amplifiers. Therefore, the proposed methods direct the PAPR reduction signals caused by clipping and filtering (CF) only to spatial channels with relatively small singular values, thereby avoiding in-band interference in spatial channels with larger singular values, which are more susceptible to such interference compared to the case without PAPR reduction. After that, the two proposed methods restrict PAPR reduction signals for all or a subset of subcarriers based on the transmission quality requirements. Both interference restrictions allow for more effective PAPR reduction while tolerating interference in the data streams. Computer simulations demonstrate that the transmission quality of the proposed methods is improved by up to approximately 30% compared to the case without PAPR reduction. Moreover, a comparative evaluation of the two proposed methods demonstrates that the interference restriction across all subcarriers effectively mitigates in-band interference caused by the resulting PAPR reduction signals while reducing the PAPR.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"21520-21532"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10855449","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855449/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose two peak-to-average power ratio (PAPR) reduction methods that apply adaptive in-band interference restriction based on singular value differences between spatial channels in uplink eigenmode massive multiple-input multiple-output (MIMO) transmission. In uplink transmission utilizing high-frequency bands, reducing PAPR is crucial to suppress non-linear distortion and ensure sufficient transmission distance, given the stringent amplification requirements of power amplifiers. Therefore, the proposed methods direct the PAPR reduction signals caused by clipping and filtering (CF) only to spatial channels with relatively small singular values, thereby avoiding in-band interference in spatial channels with larger singular values, which are more susceptible to such interference compared to the case without PAPR reduction. After that, the two proposed methods restrict PAPR reduction signals for all or a subset of subcarriers based on the transmission quality requirements. Both interference restrictions allow for more effective PAPR reduction while tolerating interference in the data streams. Computer simulations demonstrate that the transmission quality of the proposed methods is improved by up to approximately 30% compared to the case without PAPR reduction. Moreover, a comparative evaluation of the two proposed methods demonstrates that the interference restriction across all subcarriers effectively mitigates in-band interference caused by the resulting PAPR reduction signals while reducing the PAPR.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信