Abdelmgeid A. Ali;Mohamed T. Hammad;Hassan S. Hassan
{"title":"A Co-Evolutionary Genetic Algorithm Approach to Optimizing Deep Learning for Brain Tumor Classification","authors":"Abdelmgeid A. Ali;Mohamed T. Hammad;Hassan S. Hassan","doi":"10.1109/ACCESS.2025.3535844","DOIUrl":null,"url":null,"abstract":"Brain tumors are among the deadliest diseases, leading researchers to focus on improving the accuracy of tumor classification—a critical task for prompt diagnosis and effective treatment. Recent advancements in brain tumor diagnosis have significantly increased the use of deep learning techniques, particularly pre-trained models, for classification tasks. These models serve as feature extractors or can be fine-tuned for specific tasks, reducing both training time and data requirements. However, achieving high accuracy in multi-class brain tumor classification remains a major challenge, driving continued research in this area. Key obstacles include the need for expert interpretation of deep learning model outputs and the difficulty of developing highly accurate categorization systems. Optimizing the hyperparameters of Convolutional Neural Network (CNN) architectures, especially those based on pre-trained models, plays a crucial role in improving training efficiency. Manual hyperparameter adjustment is time-consuming and often results in suboptimal outcomes. To address these challenges, we propose an advanced approach that combines transfer learning with enhanced coevolutionary algorithms. Specifically, we utilize EfficientNetB3 and DenseNet121 pre-trained models in conjunction with the Co-Evolutionary Genetic Algorithm (CEGA) to classify brain tumors into four categories: gliomas, meningiomas, pituitary adenomas, and no tumors. CEGA optimizes the hyperparameters, improving both convergence speed and accuracy. Experiments conducted on a Kaggle dataset demonstrate that CEGA-EfficientNetB3 achieved the highest accuracy of 99.39%, while CEGA-DenseNet121 attained 99.01%, both without data augmentation. These results outperform cutting-edge methods, offering a rapid and reliable method for brain tumor classification. This approach has great potential to support radiologists and physicians in making timely and accurate diagnoses.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"21229-21248"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856009/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Brain tumors are among the deadliest diseases, leading researchers to focus on improving the accuracy of tumor classification—a critical task for prompt diagnosis and effective treatment. Recent advancements in brain tumor diagnosis have significantly increased the use of deep learning techniques, particularly pre-trained models, for classification tasks. These models serve as feature extractors or can be fine-tuned for specific tasks, reducing both training time and data requirements. However, achieving high accuracy in multi-class brain tumor classification remains a major challenge, driving continued research in this area. Key obstacles include the need for expert interpretation of deep learning model outputs and the difficulty of developing highly accurate categorization systems. Optimizing the hyperparameters of Convolutional Neural Network (CNN) architectures, especially those based on pre-trained models, plays a crucial role in improving training efficiency. Manual hyperparameter adjustment is time-consuming and often results in suboptimal outcomes. To address these challenges, we propose an advanced approach that combines transfer learning with enhanced coevolutionary algorithms. Specifically, we utilize EfficientNetB3 and DenseNet121 pre-trained models in conjunction with the Co-Evolutionary Genetic Algorithm (CEGA) to classify brain tumors into four categories: gliomas, meningiomas, pituitary adenomas, and no tumors. CEGA optimizes the hyperparameters, improving both convergence speed and accuracy. Experiments conducted on a Kaggle dataset demonstrate that CEGA-EfficientNetB3 achieved the highest accuracy of 99.39%, while CEGA-DenseNet121 attained 99.01%, both without data augmentation. These results outperform cutting-edge methods, offering a rapid and reliable method for brain tumor classification. This approach has great potential to support radiologists and physicians in making timely and accurate diagnoses.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.