Multimodal Zero-Shot Shelf Deformation Detection Based on MEMS Sensors and Images

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hong Yan;Jingjing Fan;Yajun Liu
{"title":"Multimodal Zero-Shot Shelf Deformation Detection Based on MEMS Sensors and Images","authors":"Hong Yan;Jingjing Fan;Yajun Liu","doi":"10.1109/ACCESS.2025.3534411","DOIUrl":null,"url":null,"abstract":"As the variety and quantity of goods in modern warehouse management continue to increase, optimizing space utilization and ensuring the safe and orderly storage of goods have become critical challenges. High-rise shelving systems are increasingly favored by enterprises, but long-term use, collisions with stacker cranes, and overloading can lead to structural deformation of the shelves. If these deformations are not detected and addressed in a timely manner, they may result in serious safety incidents and significant property damage. To address this issue, this study proposes a zero-shot shelf deformation detection method based on multimodal data fusion. The proposed approach integrates Micro-Electro-Mechanical Systems (MEMS) sensors and image data to establish a real-time monitoring and alert mechanism. Specifically, MEMS sensors are employed for real-time acquisition of shelf status, with threshold values set to trigger an initial alert mechanism. Simultaneously, cameras capture shelf images, and multiple You Only Look Once (YOLO) models are used to detect and classify critical components of the shelf, such as beams and columns. YOLOv11n is ultimately selected as the optimal model for detecting these structural elements. Based on the detected beams and columns, further feature extraction is performed, and the sensor data is fused with these features. A K-Means clustering algorithm is then applied to conduct the clustering analysis. To address the issue of a lack of negative samples in the dataset, the study employs oversampling techniques, including SMOTE, ADASYN, and Borderline-SMOTE, combined with machine learning models such as Random Forest and Gradient Boosting Decision Trees (GBDT). The experimental results demonstrate that both Random Forest and GBDT achieved precision, recall, and F1 scores exceeding 95%, confirming the effectiveness and accuracy of the proposed method in shelf deformation detection. The multimodal detection method proposed in this study not only improves the accuracy and real-time performance of shelf deformation detection but also provides strong technical support for the safety management of warehouse operations.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"21486-21502"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854213","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854213/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As the variety and quantity of goods in modern warehouse management continue to increase, optimizing space utilization and ensuring the safe and orderly storage of goods have become critical challenges. High-rise shelving systems are increasingly favored by enterprises, but long-term use, collisions with stacker cranes, and overloading can lead to structural deformation of the shelves. If these deformations are not detected and addressed in a timely manner, they may result in serious safety incidents and significant property damage. To address this issue, this study proposes a zero-shot shelf deformation detection method based on multimodal data fusion. The proposed approach integrates Micro-Electro-Mechanical Systems (MEMS) sensors and image data to establish a real-time monitoring and alert mechanism. Specifically, MEMS sensors are employed for real-time acquisition of shelf status, with threshold values set to trigger an initial alert mechanism. Simultaneously, cameras capture shelf images, and multiple You Only Look Once (YOLO) models are used to detect and classify critical components of the shelf, such as beams and columns. YOLOv11n is ultimately selected as the optimal model for detecting these structural elements. Based on the detected beams and columns, further feature extraction is performed, and the sensor data is fused with these features. A K-Means clustering algorithm is then applied to conduct the clustering analysis. To address the issue of a lack of negative samples in the dataset, the study employs oversampling techniques, including SMOTE, ADASYN, and Borderline-SMOTE, combined with machine learning models such as Random Forest and Gradient Boosting Decision Trees (GBDT). The experimental results demonstrate that both Random Forest and GBDT achieved precision, recall, and F1 scores exceeding 95%, confirming the effectiveness and accuracy of the proposed method in shelf deformation detection. The multimodal detection method proposed in this study not only improves the accuracy and real-time performance of shelf deformation detection but also provides strong technical support for the safety management of warehouse operations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信